Parallel Iterative Linear Solvers on GPU: A
Financial Engineering Case

Abstract—In many numerical applications resulting from com- For regular or irregular sparse linear systems, the efficien
putational science and engineering problems, the solutioof jmplementation of solvers on parallel architectures bezpm
sparse linear systems is the most prohibitively compute imnsive harder. Over the past three decades, a number of research

task. Consequently, the linear solvers need to be carefullghosen fforts h ted i llel i |
and efficiently implemented in order to harness the availab# efiorts have resulted In paraflel sparse finear Solvers op-

computing resources. Krylov subspace based iterative savs timized for latest Computational architectures. Our gCEiI i
have been widely used for solving large systems of linear to complement these efforts by developing a comprehensive
equations. In this paper, we focus on the design of such itetide  gparse linear solver package for GPUs or alternativelyedall
solvers to take advantage of massive parallelism of generaIGF,GF,US Recently, GPUs have been used in various nu-

purpose Graphics Processing Units (GPU)s. We will consider . . . o L .
Stabilized BiConjugate Gradient (BiCGStab) and Conjugate merically intensive scientific applications due to theipsu

Gradient Squared (CGS) methods for the solutions of sparse ority over conventional CPUs with respect to achievable

linear systems with unsymmetric coefficient matrices. We dicuss computational power and memory bandwidth. For instance,
data structures and efficient implementation of these. .sol\re an Intel QuadCore Xeron 5140 CPU has a peak performance
on the NVIDIAs CUDA platform. We evaluate scalability of = of 59 GFlops, whereas NVIDIA GPU Tesla C1060, has a

our implementations in the context of sparse grid combinatn

technique for pricing multidimensional option pricing PDEs. peak performapce of 933 G!:Iops K’TA']' .Hardv.varelvendors

Index Terms—Sparse linear iterative solvers, GPU, parallel have also provided computational scientists with high lleve
computing, computational finance. programming tools, like Common Unified Device Architecture
(CUDA) from NVIDIA and Stream SDK, a precursor of
Close-To-Metal from AMD-ATI, for hiding low level or direct
access to GPUs, exposing as massively parallel data garalle

Multidimensional partial differential equation (PDE) pro processors. Compared to GPUs, CPUs are more flexible and
lems arise in diverse domains such as mathematical physiesn support a wider range of applications at the cost of
life sciences, and financial engineering, etc. The numleriggeatly increased chip complexity. Specifically, progratrest
approximation of these PDEs usually demands computatiaeguire complicated control flows and large data caches to
ally intensive solutions and regular tensor product gridgeh achieve optimal performance are better suited for CPU¢éase
exponential complexity due to high spatial dimensionalitynplementations. On the other hand, contemporary GPUs have
of the problem. Full grid solution techniques are usually significantly larger number of cores and devote a higher
constrained by theurse of dimensionalitythe exponential percentage of their transistors to floating point operation
growth in the number of discrete unknowns. The sparse gfitherefore, a GPU provides massive parallelism and delivers
combination technique can be used to contain this growth loétter performance than a CPU for certain applications. The
unknowns in time dependent solutionsi[18], [3]. In a nutshebparse grid computation is an example of this kind, as the
the method discretizes the problem on several sparse griclsmputation kernels are local and linear. Demonstratirey th
then solves these sub-problems which have the same spatifdctiveness of linear solvers on the CUDA platform willphe
dimensionality as the original problem but coarser diszaet us to establish the usefulness of this platform for problkkes
tion, and finally properly combines the partial solutionggi supernova simulation in Astrophysics, earthquake mauglli
the final one. In the context of this work, we use the techniqi® Geophysics, or derivatives, also called options, pgdim
proposed in[IB], which is briefly described in Sectlgh V.  Finance, which is the focus of this work.

Computational efficiency of the sparse grid combination One major challenge in computational finance is the pricing
technique depends on the efficient solution of the resultimg high dimensional options, called basket or index options
sub-problems. The linear system solvers can account fomwéh multiple underlying risk factors[[15]. In the simplest
large part of the overall computation time. In this papenultidimensional Black-Scholes model, the number of @sset
we investigate through numerical experiments performafcedetermines the the dimensionality of underlying PDEs. Gn th
Krylov subspace based iterative solvers, with which timd amne hand, the probabilistic formulation of the pricing desb
memory required per iteration do not increase and no r@sgarteasily translates into a Monte Carlo algorithm. Monte Carlo
is needed as is the case with GMRes solveis[22]. Iteratimeethods are flexible and therefore widely used for multidime
methods have additional advantage that they do not charsignal pricing but they suffer from several drawbacks sigh a
the structure of the problem|R1]. In this work, we focus orelatively slow convergence and difficulty to compute aater
two most popular iterative solvers, BiCGStab and CGS. sensitivities of the solution (known as “Greeks” in finand@h

I. INTRODUCTION



the other hand, the direct solving of the underlying PDErsffeC. CUDA programming model

fast convergence and easy computation of the sensitivili's  Nv/|DIA's Compute Unified Device Architecture (CUDA) is
the method is often prohibitively computationally dematdi 5 general purpose parallel computing architecture withveho
and suffers from theurse of dimensionalit)We use sparse parallel programming model and instruction set architectu
grid combination technique described inl [3] to solve thig for CUDA exposes the CUDA programming model as an
problem using GPU based linear solvers. . abstraction of GPU parallel architecture using a minimal se

The structure of the remainder of this paper is as followgt extensions to the C language by allowing programmers to
In Section(ll, we describe the NVIDIA GPU architecture. Ijefine C functions, called kernels. When called, these kerne
Section[Tll, we provide a brief review of works that are ofyre executed N times in parallel by N different CUDA threads
interest with regard to this paper. The efficient parallet imn a hierarchical fashion, as opposed to only once as is the
plementation details, including sparse matrix storagenés - case in regular C functions. NVIDIA also provides CUBLAS,
and the CUDA based matrix-vector multiplication (SpMV) BLAS (Basic Linear Algebra Subprograms) library ported
libraries, are discussed in Sectibnl IV. Having discussed th, cupA, which enables the use of GPUs without direct
combination technique in the financial engineering context gperation of the CUDA drivers. Our solver implementations
Sectionl¥, we present numerical and performance results,jge this library mainly for vector-vector operations. CUES.
Sectior[V]. SectiofL V1l contains a summery of our findinggjoes not provide sparse matrix storage structures.
and future directions for investigation.

[1l. RELATED WORK

GPU based linear solversGPU memory can be efficiently
utilized for solvers where the matrix has a regular struetur

In this section, we discuss the GPU parallel computing dn this work, our target is to solve systems with irregular
chitecture followed by the CUDA programming model whictsparsity. A few other algorithms have been studied to solve
facilitates the developing data parallel applications 8HINA  sparse and dense linear systems. Dense linear algebnae®uti
GPUs. are provided by NVIDIA, and their careful optimizations are
studied in [29]. It is well known that due to their regular
access patterns, dense linear algebra algorithms arewiteltls

Traditionally designed to excel in visualization taskselikto GPU architecture. However, due to the amount of data
compute intensive rendering, the architecture of a GPU mal@ntained in a dense matrix, in most cases the computations
it an ideal candidate for massively parallel data procgsdm are bandwidth limited. Direct factorization-based sodvieave
general, unlike CPU, a GPU has more transistors dedicatet®en ported to GPU$§[80],_[31]. Most of these works rely on
data processing than to data caching and flow control. A babiocking strategies to parallelize the operations.
building block of NVIDIA GPUs is a multiprocessor with Sparse linear algebra is somewhat more difficult to adapt to
8 cores, up to 16384 32-bit registers, 16KB memory shar&PUs, at least for unstructured problems. Several tecksiqu
between 1024 co-resident threads (a multiprocessor ee®cutave been proposed in the literatdrel [2[71) [1B8]1[25]. Thgama
a block of up to 16 warps, comprising of up to 32 threadsssues involve how the sparse matrix is stored (compressed
simultaneously). With up to 240 cores (30 multiprocessorsjorage formats), and whether blocking is used. To exploit
and memory bandwidth up to 102 GBps, the latest generatiorassive parallelism offered by GPU, the optimizations for
of GPUs offers extremely cost-effective computational powreducing memory footprint and hence hiding the memory
not only for visualization but also for general purposestific  access latency is very important. Bell et all[25] compare
computations. GPU SpMV results with SpMV results on various multi-core
platforms obtained by [26] and illustrate that GPUs offestbe
performance.

NVIDIA GPU memory model is highly hierarchical and The first GPU-based Conjugate Gradient solver for un-
there exist per-thread local memory, per-thread-blockezha structured matrices is proposed inJ[27]. To utilize memory
memory and device memory which aggregates global, consthandwidth, blocked compressed sparse row (BCSR) format
and texture memory allocated to a grid, an array of threadatrix storage is used ir_[L3] instead of CSR. BCSR de-
blocks. A thread executes a kernel, GPU program, and coaneases number of memory fetches from the device memory
municates with threads in the same thread block via higto some extent, however, number of elements to be multiplied
bandwidth low-latency shared memory. Generally, optingzi increases. Both these works solve systems in single poecisi
the performance of CUDA applications could involve optimizfloating point. A mixed precision, multi-grid solver for a
ing data access patterns to these various memory spacés. EzeU cluster is proposed i [83]. The multi-gpu based general
of the memory space has certain performance charactsrisparpose symmetric linear systems solver with double pi@tis
and constraints. Efficient implementation of solver kesnekolution accuracy is presented [n]32].
must consider carefully CUDA memory spaces, specifically, In [27], authors use textures to store non-zero coefficients
local and global memories which are not cached and haska matrix and its associated two level look tables for CSR
high access latencies. format to implement conjugate gradient solver. The lookup

II. NVIDIA GPU ARCHITECTURE AND THECUDA
PROGRAMMING MODEL

A. Processor Architecture

B. Memory Architecture



| Kernels | Methods |

terms of amount of storage required, the accessing meth-

Kernel | FLOPs Method Initial Iterations . . f
| | I | | | ods such as the amount of indirect addressing required for
SpMV 2c CGS 10n+2a0—4 | 2dn+4a—3 . . .
dot | 2n—1 | BiCGStab| 10n + 20— 4 | 30n + 4 — 5 fundamental operations like matrix-vector products, grelrt
axpy o2n BIiCG 5n4+2a—1 | 15n+2a —4 adaptability for parallel architectures. A survey of vaiso
scal n sparse storage formats can be found[inl [20]. Due to matrix
TABLE | sparsity, memory access patterns tend to be highly irregula

FLOPS FORBASIC KERNELS ANDITERATIVE SOLVERS. 1 IS DIMENSION

and utilization of global uncached memory can suffer from
OF A MATRIX, & IS NUMBER OF NONZEROS

low spatial or temporal locality. Each format takes advgata
of specific properties of the sparse matrix and may achieve
different degree of efficiency of space and computational
table is used to address the data and to sort the rows®dfciency. We prefer to consider general storage formaisiwh
the matrix according to the number of non-zero coefficienf§€ Suitable for matrices with arbitrary sparse structive.
in each row. Then an iteration is performed on the GPEPnsider following formats in our study:
simultaneously over all rows of the same size to complete,» Coordinate (COO): is a general sparse matrix format
for instance, a matrix-vector operation. Another approtch that comprises of array®w, col and data to store row
implement sparse matrices based on CSR format was proposed indices, column indices and values of nonzero matrix
in which vertex buffer is used to store non-zero eleménf} [28  entries, respectively. This format is very space inefficien
and computationally intensive among the other formats
Sparse Grid methods for option pricing. Combination we considered.
technique was first introduced ial[3]. Some results on conver « Compressed Sparse Row (CSR)s a general-purpose
gence and error analysis of the method (which are notunderin sparse matrix format. It does not consider any order-

vestigation here) can be found [A [1] [6]] [71.110]. The sp& ing among nonzero values w!thin ea_lch row. Subsequent
grid combination technique has been successfully apptied i  NONZeros (_)f rows are stored n COHUQUOU_S memory, and
fluid mechanics[14],[15], in data minin@][8] or in finance [2], additional integer arrays specify column index for each

[A2]. In this paper, we deal with the combination technique, —honzero and beginning of offset of each row.

for solving the Black-Scholes PDEs, which is presented ins Block Compressed Sparse Row (BCSR)s particularly
[M2]. In this paper authors also discuss an approach where useful when the sparse matrix has square dense blocks
individual sparse grids are solved in parallel on a clusfer o  Of nonzeros in some regular pattern. It enables register

workstations. blocking strategies, and vector processing significarty r
duces the required memory bandwidth and computational
IV. | TERATIVE SOLVERS ONGPUs time for matrices with large block sizes ]20].

Hybrid HYB : is a combination of theEllpack-ltpack
(ELL) (or Diagonal (DIA)) and COO format, by cou-
pling the speed of ELL (or DIA), utilizing the memory
bandwidth efficiently, and the flexibility of COO. It is
usually the fastest format for a wide range of unstructured
matrices.

We are interested in methods for solving unsymmetric'
systems of linear equations arising in the sparse grid nastho
One of the leading families for linear system solvers isaiige
solvers known as Krylov subspace methads [20]] [21]] [23].
We selected BiCGStab and CGS methods for their suitability
for solving unsymmetric linear systems.

Iterative methods use four basic computational kerneB: Sparse Matrix Operations
matrix vector products, preconditioner, inner productt{do  sparse matrix-vector multiplication is arguably the most
and vector update (axpy). The choice of the preconditionginyortant operation in sparse matrix computations. liezat
is very important for the efficient solution of a linear syste sp|vers generally require hundreds, if not thousands, ixaatr
[11], but we will not discuss preconditioning here becauSg.ctor products to reach convergence. Over the past decade,
it is often problem dependent. The constituent kernels@loghere has been significant amount work on optimizing SpMV.
with their computational costs are presented in Tdble I. Thgost of the work has focused on optimizing sparse matrix
efficiency of any iterative method is determined primarily byernels on general-purpose architectures. SpMV being a-mem
the performance of the matrix-vector products and theeefagry hound kernel, most optimizations target performance im
on the storage scheme used for the matrix. We elect SOg}%vements at various memory levels in the memory hierarchy
sparse matrix representations which could be suitable fppe optimizations include optimal data structure for stgri
matrices resulting in the combination technique and evelugparse matrix, exploiting block structures in sparse mainid
the performance of linear solvers with respect to varioysocking for reuse at the level of cache, TLB and registers
implementations of GPU based matrix-vector products.  [17]. various optimizations have been proposed taking into
account the complex memory hierarchy and unconventional
mapping of computation to the coresident threads on GPUs.

There exist several sparse storage formats with the aimlLet us take an example of a sparse mattixas represented
of representing sparse matrices economically. Theserdiffe in Figure[l(a), its CSR representation[ih 1(b) and a dense

A. Sparse Matrix Formats



5 s rowptr[5]=(0 3 5 5 7)) _ global__ void
2. 30 1 ’ \ \ spmv_csr_scalar _kernel ( const int num_rows ,
1 03 0 . s ; : const int * row ptr ,
0000 colind [i = [; 613021 2) const int * col_ind ,
5 i val[71=(2 3 1 1 3 4 2) const float * val ,
0420 const float * x,
a) Sparse Matrix A b) CSR format of Matrix A float * y)

{
Fig. 1. An example of CSR representation int row = blockDim.x * blockIdx.x + threadIdx.x :
if(row = num_rows J{

. . . float rowsum = 0;
vector z of lengthn. The objective is to computg = Ax,

wherey is the output dense vector of lengthlin Figure[2, we int row_start = row_ptr [row];
present a sequential implementation of the SpMV procedt int row_end = row_ptr [row +11;
using CSR format. There are several ways to parallelize tt for (int jj = row.start ; i < row_end ; jj ++)

procedure. A simple translation of this sequential routir dot += valljjl * x[col_ind[jjl]:
into a CUDA kernel is given in Figurg€l3. In this naive
approach of parallelizing the main loop, each row is asglgn 3
to one thread. One of the major problems with this parall ;
implementation on GPU is the way how threads within a wai -
access theol_ind and val arrays. Despite these values are
stored contiguously, each thread reads the elements advits r
sequentially, resulting in non-contiguous accesses taluff

memory and thus hampering_the ov_erall performance of tﬂ‘?atrices. The other formats suitable for large sparse ogetri
memory bound kernels. Additionally, if the nonzero elemenfnclude COO, CSR, HYB and Packet (PKT) format

3{;;;%?g;ytﬁstrrézztjiggfjs ?: thgéﬁwfr’];te':;gifé?;s The COO-vectorkernel based on segmented reduction is
ping y robust with respect to variations in row sizes. It is rel@bl

algorithmic as weII_as architecture specific opt|m|zat|has_ze and complements the deficiencies of the other SpMV kernels.
been prpposed to improve the performance of both se_rlal BB o-scalar kernel uses only one thread and thus exhibits
parallel implementations [26] [25]. [14L. [L.3]. We expent behaviour of a sequential algorithm. THeSR-scalarker-

with the following three libraries to implement the linear '

solvers. We use CUBLAS for dense vector operations nel uses one thread per matrix row. It has low bandwidth
' P ' utilization and hence poor computational performance,tas i

does not exploit memory coalescing. On the contr&8R-

ylrowl += rowsum;

Fig. 3. A naive CUDA kernel for CSR SpMV

__host__ wvoid 32-th d Its | .
spnv_car serial ( const int num_rows | vector uses a 32-thread warps per row results in contiguous
const int * row_ptr , memory access. This may result in poor load balancing by
const int * col_ind , increasing the number of idle threads when the number of
const froar vat nonzero coefficients is less than the warp size. Performance
float * y) ’ of CSR-scalaris rarely competitive with alternative choices,
{ while the vector kernel efficiently handles large row sizése
for {int row = 0; 1 <nun_rows ; 1 ++) HYB kernelis a combination oCOO0-vectorand ELL kernels.
float rowsum = 0O; . . .
All the kernels that we used in our implementation can also
int row_start = row ptr [rowl; benefit from the read-onlgxture cachgresent on all CUDA-
int row_end = row_ptr [row +1]; enabled devices.
for (int §j = row_start ; §j < rov.end ; i ++) 2) _I_BM Sp!\/IV_ L|bra_ry: In [14]_, guthors propose GPU
rowsun += val [33] * x[col ind[§i1];: specific, application oriented optimizations for efficiest-
ecution of SpMV kernels using CUDA. The GPU specific
) ylrowl += rowsun; optimizations include i) Exploitation of synchronizatifree
3 parallelism for achieving intra-thread-block synchratian
across the rows, ii) Optimized thread mapping based on the
Fig. 2. Serial routine for CSR SpMV affinity towards optimal memory access pattdii) Enabling

hardware optimized global memory coalesced accesses and
1) NVIDIA SpMV Library: NVIDIA made available a iv) Exploiting data reuse of input vector elements by caghin
library for SpMV computation and is one of the promithe elements in on-chip memories like texture (hardware)
nent efforts in this direction. In[I25] authors discuss theache, registers or shared memory (software) cache. These
implementation details of various sparse matrix formatd amptimizations are for the CSR format and the authors claim to
their efficient representation on NVIDIA GPUs. The libranachieve better performance than the NVIDIA SpMV library.
supports DIA and ELL formats suitable for small sparse/dengVe evaluate the performance of our solvers with Padded CSR



format, in which zeros are padded to ensure that the numbe d[ MCinterval | =6 [ 7 [ 8 | 9 [ 10 |
f entries in each row is a multiple of 16 in order to achieve |2 0941 1008 | 16491 16.19| 16061 15.99

ofentn P 3 | [20.87-20.94]| 2349 | 2259 | 21.69 | 20.80 | 20.85

aligned global memory access. Texture memory can also be 4 [ [24.63-24.69]| 26.98 | 31.43 | NA NA NA

used to store the input vector to utilize the read-only textu | 5 | [27.61-27.68]| 19.6145] NA NA NA NA

cache in order to achieve performance gains due to inpubrvect TABLE I

reuse. NUMERICAL RESULTS. MONTE CARLO CONFIDENCE INTERVALS

. 1EGPATHS AND 25 TIMESTEPS NOTE THAT MC
3) CNC SpMV Library: In [13], authors present SpMV  Co F e e e ey opae
. . L : D(SEE TEXT).
package which includes efficient implementation for BCSR
format. The sparse storage format groups non-zero values in
blocks of size BN x BM in order to maximize the memory

fetch bandwidth of GPUs, to take advantage of registers ¢e2—ix in the k-th dimension. The standard finite differences
avoid redundant fetches (register blOCking), and to redbee solution of PDE El]_) on the anisotropic gr{dl is denotedf/i_

number of indirections due to the reduced size of lookuphen the solutionV,“ obtained at leveh with the sparse
tables. Although each indirection results in dependent a1gm grid combination technique is:

fetches, it introduces memory latencies that need to beshidd
by the GPU to achieve a good efficiency. We experiment with td1
implementations of 2x2 and 4x4 blocks for lower and higher | c7 _ Z (—1)d-1-t4n (d - 1) Z %
filling ratio. " l—n) . : !
i1+ +ig=l
V. COMBINATION TECHNIQUE FOR SOLVING THE Therefore, the sparse grid combination technique allows to
BLACK-SCHOLESPDE build a leveln discretization of the problem of siz@(2"n?~1)

In this section, we discuss the financial test case chosen fon level n) instead of siz&(2"?) in the full grid case. It
evaluating the GPU implementations of linear solvers. Ttaso offers a natural coarse parallelization, since allitgmhs
objective is to compute the price of European derivatives on; summed in equatiorf)2) can be computed independently
d-dimensional basket of risky assets in the multidimendionisom one another. All sub-gridQ; are solved sequentially a
Black-Scholes framework. single GPU using BiCGStab and CGS solvers. Therefore, the

Let us denoteS;(¢) the price of thei-th asseto;(t) its speedups we are present in Section VI could be enhanced
volatility, p;;(¢) the linear correlation between assé@sndj, with a multiple GPU implementation using this “natural”
andr the risk-free interest rate. We consider a European optiparallelization.
with maturity 7" and payoffi(S). The valueV'(S,t),S €

l=n

R%,t € [0, T of this option is solution of the following Black- VI. NUMERICAL RESULTS AND PERFORMANCE
Scholes partial differential equation: In this section, we discuss the results of a set of experisnent
oV | —d d 02y using NVIDIA GPU to demonstrate the performance behavior
B T T2 2im1 2= Pif0i0i5i5i gsgs; of BICGStab and CGS.
d 1% (1)  The sequential, double precision versions of BiCGStab and
-r Z Siﬁ +rV, CGS solvers were developed and experimented on Intel Xeon
i=1 ¢

E5420, see TablE]V. For the dense vector operations we used
with terminal conditionV(S,T) = h(S). With constant BLAS library (1.2-1.3ubuntu3) and supported only CSR spars
parameters, this equation can be reduced to a multidimesisicformat. The sequential solvers and any other CPU bound code
heat equation. Although very academic, this test case ikasimwas compiled using gcc compiler &3 optimization level.
to the PDEs of more realistic models. SEk [9] for a large pariBhe GPU based solvers were executed using Tesla C870 (G80
of PDE in finance. GPU) with configuration presented in Talile] IV, connected to

As mentioned earlier, solving PDH (1) in a high-dimensional host x86/Linux system through 16-x PCI Express bus. The
case (sayl > 3) is limited by memory restriction since theCUDA kernels for SpMV operations were compiled using
problem is affected by the so-called “curse of dimensidylali NVIDIA CUDA compiler 2.1 (nvcc) to generate the device
on a regular full grid of mesh siz& ", the discretized problem code. The device code was compiled wittrch=sm 10 flag
grows exponentially with the dimension. The sparse grahd -O3 optimization level. Note that due to limitations of
combination technique allows to solve for higher dimensiofesla C870, experiments for GPU based solvers were done
by reducing the size of the problem. The framework in owith single precision arithmatic.
case is as follows. For simplicity, we assume our derivative We consider the test case presented in Sediibn V, with
contract is a basket up-and-out barrier option. In this cass up-and-out best-of barrier option dnassets. The payoff
the value of the option is zero as soon as one of the assstsvritten h(S) = (max; S; — K)* on the domain[0, B]“.
crosses a given valug, so that the PDE[]1) can be solvedOur numerical results are presented in Table Il. The fol-
with homogeneous Dirichlet boundary condition. Let us denolowing parameters have been used to obtain these resuls:
Q = [0, B]* as our domain. For each multi-indéx N4, we o; = 0.20,p;; = 0.0,r = 0.03,7 = 1,K = 100, B = 200.
denotef); the Cartesian sparse grid on that domain with me&tle solve the PDE using the combination technique at level



[ d [ Level | Total Time(s) | Solver Time(s)] [ <l le,l3>] N [NNZ ] <Ili,la,l3>] N [NNZ|
3|6 15.71 15.10 < 8,11~ 255 763 <531~ 217 | 1009
3|7 70.26 65.30 <721 381 | 1645 <522 279 | 1563
3|8 283.08 242.13 <6,3,1~ 441 | 2065 < 4,41 225 | 1065
3|19 1155.27 818.10 < 6,2,2~ 567 | 3195 < 4,3,2~ 315 | 1863
3| 10 5375.96 2553.31 <54,1> 465 | 2233 < 3,33~ 343 | 2107
TABLE Ill <532~ 651 | 3895 <6,1,1- 63 187
<442 675 | 4095 <521 93 397
TIME IN SECONDS FOR PRICING A BASKET OF THREE EQUITIES WITH 2 433% 735 | 4627 2431w 105 | 481
DIFFERENT REFINEMENT LEVELS < 7’1’1>_ 127 | 379 < 4’2’2>_ 135 | 747
<6,2,1> 189 | 813 < 3,32~ 147 | 847
[ Feature [ C870 [E5420 | TABLE V
- A SET OF DISCRETE SYSTEMS FOH = 3 AND [ = 10 WITH LEVEL OF
Multiprocessors 16 2 DISCRETIZATION IN EACH DIRECTION GIVEN BY THE PERMUTATION &F <
Processor cores 128 8 l1,12, I3 . N 1S DIMENSION OF A MATRIX AND NN Z IS NUMBER OF
Proce_ssor Clock . 1.35 GHz 2.6 GHz NONZEROS THE TOTAL NUMBER OF DISCRETE SYSTEMS I185.
Off-chip Memory Size| 1.5 GB 4 GB
Peak Performance 500 GFlops| 80 GFlops
TABLE IV 18
ARCHITECTURAL CONFIGURATIONS OFNVIDIA T ESLA C870AND INTEL j CSRIX1 —— j
XEONES5420. | BCSR2x2 |
16 BCSRA4X4 %+
CSR-vector &
14 CSR-vector-cache i
CSR-scalar
CSR-scalar-cache - e -
. . 12 COO-vector --4--
n = 6,...,10 with 5000 timesteps. The accuracy of our COO-vector-cache =

COO-scalar —v—

numerical results is verified by comparison with a Monte Qarl& 10 f HYB
] : H : . HYB-cache o
95% confidence interval obtained with averageldf) prices sl CSR-Aligned Access -+

CSR-Aligned Access -cache

each computed withh £6 simulation paths angél5 timesteps. It CSR-Thread mapping

is known that these confidence intervals are positivelydulas
since the evaluation of the crossing of the barrier is not 4}
evaluated continuously. Tabl€él Il shows that convergence is
achieved, at least fo = 2,3. For error analysis of the ;
combination technique please refer {d [7]. We present the 05—
resulting linear systems faf = 3 andn = 10 in Table[\. Levels

For lower dimensions and levels the linear systems are esmall

in size, however, the number of unknowns increases with tHgd- 4. Speedup for BICGStab using GPU for increasing probiézes.
increase in dimensions and approximation level. For irtgtan
in eight dimensions a coarsest reasonable sparse grid gan ha

Speedup (T1/Tp)

18 T
CSR1x1 ——

up to 200 million unknowns]3]. 16 | A o7 S )

I I 1 1 CSR-vect & $

For iterative golve_rs in the expenments, the convergence | CSRGavector

tolerance of the iterative methods is set #6-6. The execution CspeuRsealar
times using sequential solvers fdr= 3 with n = 6,...,10 12 COO-vector - -4---

COO-vector-cache -+
COO-scalar —+—
10 HYB
HYB-cache o
s | CSR-Aligned Access -+
CSR-Aligned Access -cache
CSR-Thread mapping

are presented in Tablellll. The colunBolver Timerepresents
the time required for solving the linear discrete systentee T
remaining of theTotal Timeis spent on construcing partial g
grids and combining the subsolutions. It usually remainsco © ¢
stant and is independent of parallel or sequential solvees.u
Hence, for the performance evaluation, we only consider the
Solver time The combined speedups achieved for solving all 2
the grids using GPU based BiCGStab and CGS are presented  fe=== : ‘ ‘
in Figureld and FigurEl5 respectively. The speedup is condpute 6 7 8 9 10
as the ratio of the parallel execution time (Tp) using Tesla a Levels
the execution time using one CPU(T1). Overall performarice 0 Frig. 5. Speedup for CGS using GPU for increasing problenssize
these solvers in terms of mega FLOPs (MFLOPS) is presented
in Figure[® and Figur€l7. The total number of FLOPs are
computed as described in Talfle I. Scalarstands for a BiCGStab or CGS solver using NVIDIA's
scalar CSR SpMV kernel). The performance characterisfics o
both the solvers follow similar behavior for scalabilityerice
We evaluate the performance of BiCGStab and CGS with the following discussion we do not distinguish between
respect to the underlying SpMV kernels. For the analysis, via®th the solvers, if not mentioned otherwise. The otheresolv
call both the solvers by the SpMV kernel name used @SR- kernels (lot, axpy and sca)) in both the solvers are assumed

eedup (T1/Tp)




to take equivalent time for solving a perticular grid.
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With CNC library: BCSR2x2and BCSR4x4kernels take
advantage of square dense block patterns in a sparse matrix,
saving in locations and reduction in indirect addressinge T
sparse grids resulted in the combination technique does not
exhibit any of such pattern. This format leads to registeelle
data reuse resulting coarse grained parallelism, however i
our case, suffers from non-optimal global memory accesses.
This attributes to its poor performance compared to other
variants of CSR formats that we investigatedSR1x1is
uses one thread per row and 16 threads per block. The
equivalent NVIDIA CSR-scalarkernel uses 256 threads per
block. CSR1xXomparatively results in poor thread granularity
due to more number of block€SR1xIesults in an inefficient
utilization as the multiprocessor spends a large fractibn o
time in block switching. Optimal block size (and grid size)
is necessary to ensure maximal utilization of the resources

With NVIDIA’s library: The CSR-vector kernelses one
32-thread warp per matrix row. This approach benefits from
contiguous global memory access. However, as our testcases
have small scale, the resulting matrices have fewer than 32
non-zeros per row, which causes underutilization of this&ke
Although this kernels outperforms our other SpMV consid-
erations. A CSR-scalarwhich uses one thread per matrix
row performs poorly compared to its vector counterpart. It
uses 256 threads per block and outperfol@®R1x1which
uses 16 threads per block. TI@OO-vectorkernel is based
on segmented reduction. The COO format has the worst
computational intensity of all. The segmented reduction op
eration seems more expensive than alternative approdudies t
distribute work across threads of executi@OO-scalarap-
proach which allocates only one thread has the worst computa
tional complexity, equivalent of sequential CSR. Nevedhs,
COO-vectorkernel can be used to compensate the deficiencies
of the other kernels. ThidYBformat couples the speed of ELL
and the flexibility of COO. The ELL alone cannot be used in
our matrices as there are very small number of nonzero entrie
per row. But when combined witBOO-vectorin HYB kernel
we observe the performance improvement o&€0O-vector
and COO-scalarkernels.

With IBM'’s Library: We experiment with two main compile-
time optimizations proposed ir_[14]CSR-Aligned Access
aligned global memory accesses, afidread Mapping op-
timized thread mapping, for the CSR formaAligned Access
kernel is similar toNVIDIA-vectorbut uses 16-thread warp per
matrix row and makes alignment adjustments. The matrices
resulting from combination technique have very low number
of nonzeros per row, usually less than 16, which contributes
to the poor performance of these optimizations.

In terms of speed, the performance of the CPU remains
constant (around 4 MFLOPs) while the performance of GPU
based solvers boosts with the increasing problem sizes, see
Figure[® and FigurEl7. CPUs generally mask the latency with
on-chip cache, while GPUs mask the latency with a large num-
ber of threads and assigned work load. The increasing work
|oad can promise to hide the latency to do texture accesses.
With the problem sizes at our disposal, most of the cached
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