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Abstract—In many numerical applications resulting from com-
putational science and engineering problems, the solutionof
sparse linear systems is the most prohibitively compute intensive
task. Consequently, the linear solvers need to be carefullychosen
and efficiently implemented in order to harness the available
computing resources. Krylov subspace based iterative solvers
have been widely used for solving large systems of linear
equations. In this paper, we focus on the design of such iterative
solvers to take advantage of massive parallelism of general
purpose Graphics Processing Units (GPU)s. We will consider
Stabilized BiConjugate Gradient (BiCGStab) and Conjugate
Gradient Squared (CGS) methods for the solutions of sparse
linear systems with unsymmetric coefficient matrices. We discuss
data structures and efficient implementation of these solvers
on the NVIDIA’s CUDA platform. We evaluate scalability of
our implementations in the context of sparse grid combination
technique for pricing multidimensional option pricing PDEs.

Index Terms—Sparse linear iterative solvers, GPU, parallel
computing, computational finance.

I. I NTRODUCTION

Multidimensional partial differential equation (PDE) prob-
lems arise in diverse domains such as mathematical physics,
life sciences, and financial engineering, etc. The numerical
approximation of these PDEs usually demands computation-
ally intensive solutions and regular tensor product grids have
exponential complexity due to high spatial dimensionality
of the problem. Full grid solution techniques are usually
constrained by thecurse of dimensionality: the exponential
growth in the number of discrete unknowns. The sparse grid
combination technique can be used to contain this growth of
unknowns in time dependent solutions [18], [3]. In a nutshell,
the method discretizes the problem on several sparse grids,
then solves these sub-problems which have the same spatial
dimensionality as the original problem but coarser discretiza-
tion, and finally properly combines the partial solutions toget
the final one. In the context of this work, we use the technique
proposed in [3], which is briefly described in Section V.

Computational efficiency of the sparse grid combination
technique depends on the efficient solution of the resulting
sub-problems. The linear system solvers can account for a
large part of the overall computation time. In this paper
we investigate through numerical experiments performanceof
Krylov subspace based iterative solvers, with which time and
memory required per iteration do not increase and no restarting
is needed as is the case with GMRes solvers[22]. Iterative
methods have additional advantage that they do not change
the structure of the problem[21]. In this work, we focus on
two most popular iterative solvers, BiCGStab and CGS.

For regular or irregular sparse linear systems, the efficient
implementation of solvers on parallel architectures becomes
harder. Over the past three decades, a number of research
efforts have resulted in parallel sparse linear solvers op-
timized for latest computational architectures. Our goal is
to complement these efforts by developing a comprehensive
sparse linear solver package for GPUs or alternatively called
GPGPUs. Recently, GPUs have been used in various nu-
merically intensive scientific applications due to their supe-
riority over conventional CPUs with respect to achievable
computational power and memory bandwidth. For instance,
an Intel QuadCore Xeron 5140 CPU has a peak performance
of 29 GFlops, whereas NVIDIA GPU Tesla C1060, has a
peak performance of 933 GFlops [34]. Hardware vendors
have also provided computational scientists with high level
programming tools, like Common Unified Device Architecture
(CUDA) from NVIDIA and Stream SDK, a precursor of
Close-To-Metal from AMD-ATI, for hiding low level or direct
access to GPUs, exposing as massively parallel data parallel
processors. Compared to GPUs, CPUs are more flexible and
can support a wider range of applications at the cost of
greatly increased chip complexity. Specifically, programsthat
require complicated control flows and large data caches to
achieve optimal performance are better suited for CPU-based
implementations. On the other hand, contemporary GPUs have
a significantly larger number of cores and devote a higher
percentage of their transistors to floating point operations.
Therefore, a GPU provides massive parallelism and delivers
better performance than a CPU for certain applications. The
sparse grid computation is an example of this kind, as the
computation kernels are local and linear. Demonstrating the
effectiveness of linear solvers on the CUDA platform will help
us to establish the usefulness of this platform for problemslike
supernova simulation in Astrophysics, earthquake modelling
in Geophysics, or derivatives, also called options, pricing in
Finance, which is the focus of this work.

One major challenge in computational finance is the pricing
of high dimensional options, called basket or index options,
with multiple underlying risk factors [15]. In the simplest
multidimensional Black-Scholes model, the number of assets
determines the the dimensionality of underlying PDEs. On the
one hand, the probabilistic formulation of the pricing problem
easily translates into a Monte Carlo algorithm. Monte Carlo
methods are flexible and therefore widely used for multidimen-
sional pricing but they suffer from several drawbacks such as a
relatively slow convergence and difficulty to compute accurate
sensitivities of the solution (known as “Greeks” in finance). On



the other hand, the direct solving of the underlying PDE offers
fast convergence and easy computation of the sensitivities, but
the method is often prohibitively computationally demanding
and suffers from thecurse of dimensionality. We use sparse
grid combination technique described in [3] to solve this
problem using GPU based linear solvers.

The structure of the remainder of this paper is as follows.
In Section II, we describe the NVIDIA GPU architecture. In
Section III, we provide a brief review of works that are of
interest with regard to this paper. The efficient parallel im-
plementation details, including sparse matrix storage formats
and the CUDA based matrix-vector multiplication (SpMV)
libraries, are discussed in Section IV. Having discussed the
combination technique in the financial engineering contextin
Section V, we present numerical and performance results in
Section VI. Section VII contains a summery of our findings,
and future directions for investigation.

II. NVIDIA GPU A RCHITECTURE AND THECUDA
PROGRAMMING MODEL

In this section, we discuss the GPU parallel computing ar-
chitecture followed by the CUDA programming model which
facilitates the developing data parallel applications on NVIDIA
GPUs.

A. Processor Architecture

Traditionally designed to excel in visualization tasks like
compute intensive rendering, the architecture of a GPU makes
it an ideal candidate for massively parallel data processing. In
general, unlike CPU, a GPU has more transistors dedicated to
data processing than to data caching and flow control. A basic
building block of NVIDIA GPUs is a multiprocessor with
8 cores, up to 16384 32-bit registers, 16KB memory shared
between 1024 co-resident threads (a multiprocessor executes
a block of up to 16 warps, comprising of up to 32 threads,
simultaneously). With up to 240 cores (30 multiprocessors)
and memory bandwidth up to 102 GBps, the latest generation
of GPUs offers extremely cost-effective computational power
not only for visualization but also for general purpose scientific
computations.

B. Memory Architecture

NVIDIA GPU memory model is highly hierarchical and
there exist per-thread local memory, per-thread-block shared
memory and device memory which aggregates global, constant
and texture memory allocated to a grid, an array of thread
blocks. A thread executes a kernel, GPU program, and com-
municates with threads in the same thread block via high-
bandwidth low-latency shared memory. Generally, optimizing
the performance of CUDA applications could involve optimiz-
ing data access patterns to these various memory spaces. Each
of the memory space has certain performance characteristics
and constraints. Efficient implementation of solver kernels
must consider carefully CUDA memory spaces, specifically,
local and global memories which are not cached and have
high access latencies.

C. CUDA programming model

NVIDIA’s Compute Unified Device Architecture (CUDA) is
a general purpose parallel computing architecture with a novel
parallel programming model and instruction set architecture.
C for CUDA exposes the CUDA programming model as an
abstraction of GPU parallel architecture using a minimal set
of extensions to the C language by allowing programmers to
define C functions, called kernels. When called, these kernels
are executed N times in parallel by N different CUDA threads
in a hierarchical fashion, as opposed to only once as is the
case in regular C functions. NVIDIA also provides CUBLAS,
a BLAS (Basic Linear Algebra Subprograms) library ported
to CUDA, which enables the use of GPUs without direct
operation of the CUDA drivers. Our solver implementations
use this library mainly for vector-vector operations. CUBLAS
does not provide sparse matrix storage structures.

III. R ELATED WORK

GPU based linear solvers:GPU memory can be efficiently
utilized for solvers where the matrix has a regular structure.
In this work, our target is to solve systems with irregular
sparsity. A few other algorithms have been studied to solve
sparse and dense linear systems. Dense linear algebra routines
are provided by NVIDIA, and their careful optimizations are
studied in [29]. It is well known that due to their regular
access patterns, dense linear algebra algorithms are well suited
to GPU architecture. However, due to the amount of data
contained in a dense matrix, in most cases the computations
are bandwidth limited. Direct factorization-based solvers have
been ported to GPUs [30], [31]. Most of these works rely on
blocking strategies to parallelize the operations.

Sparse linear algebra is somewhat more difficult to adapt to
GPUs, at least for unstructured problems. Several techniques
have been proposed in the literature [27], [13], [25]. The major
issues involve how the sparse matrix is stored (compressed
storage formats), and whether blocking is used. To exploit
massive parallelism offered by GPU, the optimizations for
reducing memory footprint and hence hiding the memory
access latency is very important. Bell et al [25] compare
GPU SpMV results with SpMV results on various multi-core
platforms obtained by [26] and illustrate that GPUs offer best
performance.

The first GPU-based Conjugate Gradient solver for un-
structured matrices is proposed in [27]. To utilize memory
bandwidth, blocked compressed sparse row (BCSR) format
matrix storage is used in [13] instead of CSR. BCSR de-
creases number of memory fetches from the device memory
to some extent, however, number of elements to be multiplied
increases. Both these works solve systems in single precision
floating point. A mixed precision, multi-grid solver for a
GPU cluster is proposed in [33]. The multi-gpu based general
purpose symmetric linear systems solver with double precision
solution accuracy is presented in [32].

In [27], authors use textures to store non-zero coefficients
of a matrix and its associated two level look tables for CSR
format to implement conjugate gradient solver. The lookup



Kernels Methods

Kernel FLOPs Method Initial Iterations

SpMV 2α CGS 10n + 2α − 4 24n + 4α − 3

dot 2n − 1 BiCGStab 10n + 2α − 4 30n + 4α − 5

axpy 2n BiCG 5n + 2α − 1 15n + 2α − 4

scal n

TABLE I
FLOPS FORBASIC KERNELS AND ITERATIVE SOLVERS. n IS DIMENSION

OF A MATRIX , α IS NUMBER OF NONZEROS.

table is used to address the data and to sort the rows of
the matrix according to the number of non-zero coefficients
in each row. Then an iteration is performed on the GPU
simultaneously over all rows of the same size to complete,
for instance, a matrix-vector operation. Another approachto
implement sparse matrices based on CSR format was proposed
in which vertex buffer is used to store non-zero elements [28]
.

Sparse Grid methods for option pricing: Combination
technique was first introduced in [3]. Some results on conver-
gence and error analysis of the method (which are not under in-
vestigation here) can be found in [1], [6], [7], [10]. The sparse
grid combination technique has been successfully applied in
fluid mechanics [4], [5], in data mining [8] or in finance [2],
[12]. In this paper, we deal with the combination technique,
for solving the Black-Scholes PDEs, which is presented in
[12]. In this paper authors also discuss an approach where
individual sparse grids are solved in parallel on a cluster of
workstations.

IV. I TERATIVE SOLVERS ONGPUS

We are interested in methods for solving unsymmetric
systems of linear equations arising in the sparse grid methods.
One of the leading families for linear system solvers is iterative
solvers known as Krylov subspace methods [20], [21], [23].
We selected BiCGStab and CGS methods for their suitability
for solving unsymmetric linear systems.

Iterative methods use four basic computational kernels:
matrix vector products, preconditioner, inner product (dot),
and vector update (axpy). The choice of the preconditioner
is very important for the efficient solution of a linear system
[11], but we will not discuss preconditioning here because
it is often problem dependent. The constituent kernels along
with their computational costs are presented in Table I. The
efficiency of any iterative method is determined primarily by
the performance of the matrix-vector products and therefore
on the storage scheme used for the matrix. We elect some
sparse matrix representations which could be suitable for
matrices resulting in the combination technique and evaluate
the performance of linear solvers with respect to various
implementations of GPU based matrix-vector products.

A. Sparse Matrix Formats

There exist several sparse storage formats with the aim
of representing sparse matrices economically. These differ in

terms of amount of storage required, the accessing meth-
ods such as the amount of indirect addressing required for
fundamental operations like matrix-vector products, and their
adaptability for parallel architectures. A survey of various
sparse storage formats can be found in [20]. Due to matrix
sparsity, memory access patterns tend to be highly irregular
and utilization of global uncached memory can suffer from
low spatial or temporal locality. Each format takes advantage
of specific properties of the sparse matrix and may achieve
different degree of efficiency of space and computational
efficiency. We prefer to consider general storage formats which
are suitable for matrices with arbitrary sparse structure.We
consider following formats in our study:

• Coordinate (COO): is a general sparse matrix format
that comprises of arraysrow, col and data to store row
indices, column indices and values of nonzero matrix
entries, respectively. This format is very space inefficient
and computationally intensive among the other formats
we considered.

• Compressed Sparse Row (CSR): is a general-purpose
sparse matrix format. It does not consider any order-
ing among nonzero values within each row. Subsequent
nonzeros of rows are stored in contiguous memory, and
additional integer arrays specify column index for each
nonzero and beginning of offset of each row.

• Block Compressed Sparse Row (BCSR): is particularly
useful when the sparse matrix has square dense blocks
of nonzeros in some regular pattern. It enables register
blocking strategies, and vector processing significantly re-
duces the required memory bandwidth and computational
time for matrices with large block sizes [20].

• Hybrid HYB : is a combination of theEllpack-Itpack
(ELL) (or Diagonal (DIA)) and COO format, by cou-
pling the speed of ELL (or DIA), utilizing the memory
bandwidth efficiently, and the flexibility of COO. It is
usually the fastest format for a wide range of unstructured
matrices.

B. Sparse Matrix Operations

Sparse matrix-vector multiplication is arguably the most
important operation in sparse matrix computations. Iterative
solvers generally require hundreds, if not thousands, matrix-
vector products to reach convergence. Over the past decade,
there has been significant amount work on optimizing SpMV.
Most of the work has focused on optimizing sparse matrix
kernels on general-purpose architectures. SpMV being a mem-
ory bound kernel, most optimizations target performance im-
provements at various memory levels in the memory hierarchy.
The optimizations include optimal data structure for storing
sparse matrix, exploiting block structures in sparse matrix and
blocking for reuse at the level of cache, TLB and registers
[14]. Various optimizations have been proposed taking into
account the complex memory hierarchy and unconventional
mapping of computation to the coresident threads on GPUs.

Let us take an example of a sparse matrixA, as represented
in Figure 1(a), its CSR representation in 1(b) and a dense



Fig. 1. An example of CSR representation.

vector x of length n. The objective is to computey = Ax,
wherey is the output dense vector of lengthn. In Figure 2, we
present a sequential implementation of the SpMV procedure
using CSR format. There are several ways to parallelize this
procedure. A simple translation of this sequential routine
into a CUDA kernel is given in Figure 3. In this naive
approach of parallelizing the main loop, each row is assigned
to one thread. One of the major problems with this parallel
implementation on GPU is the way how threads within a warp
access thecol ind and val arrays. Despite these values are
stored contiguously, each thread reads the elements of its row
sequentially, resulting in non-contiguous accesses to off-chip
memory and thus hampering the overall performance of the
memory bound kernels. Additionally, if the nonzero elements
are unevenly distributed across all the rows, it may lead to poor
utilization of the resources keeping many threads idle. Several
algorithmic as well as architecture specific optimizationshave
been proposed to improve the performance of both serial and
parallel implementations [26], [25], [14], [13]. We experiment
with the following three libraries to implement the linear
solvers. We use CUBLAS for dense vector operations.

Fig. 2. Serial routine for CSR SpMV

1) NVIDIA SpMV Library: NVIDIA made available a
library for SpMV computation and is one of the promi-
nent efforts in this direction. In [25] authors discuss the
implementation details of various sparse matrix formats and
their efficient representation on NVIDIA GPUs. The library
supports DIA and ELL formats suitable for small sparse/dense

Fig. 3. A naive CUDA kernel for CSR SpMV

matrices. The other formats suitable for large sparse matrices
include COO, CSR, HYB and Packet (PKT) format.

The COO-vectorkernel based on segmented reduction is
robust with respect to variations in row sizes. It is reliable
and complements the deficiencies of the other SpMV kernels.
COO-scalar kernel uses only one thread and thus exhibits
behaviour of a sequential algorithm. TheCSR-scalarker-
nel uses one thread per matrix row. It has low bandwidth
utilization and hence poor computational performance, as it
does not exploit memory coalescing. On the contrary,CSR-
vector uses a 32-thread warps per row results in contiguous
memory access. This may result in poor load balancing by
increasing the number of idle threads when the number of
nonzero coefficients is less than the warp size. Performance
of CSR-scalaris rarely competitive with alternative choices,
while the vector kernel efficiently handles large row sizes.The
HYB kernelis a combination ofCOO-vectorand ELL kernels.
All the kernels that we used in our implementation can also
benefit from the read-onlytexture cachepresent on all CUDA-
enabled devices.

2) IBM SpMV Library: In [14], authors propose GPU
specific, application oriented optimizations for efficientex-
ecution of SpMV kernels using CUDA. The GPU specific
optimizations include i) Exploitation of synchronization-free
parallelism for achieving intra-thread-block synchronization
across the rows, ii) Optimized thread mapping based on the
affinity towards optimal memory access pattern, iii) Enabling
hardware optimized global memory coalesced accesses and
iv) Exploiting data reuse of input vector elements by caching
the elements in on-chip memories like texture (hardware)
cache, registers or shared memory (software) cache. These
optimizations are for the CSR format and the authors claim to
achieve better performance than the NVIDIA SpMV library.
We evaluate the performance of our solvers with Padded CSR



format, in which zeros are padded to ensure that the number
of entries in each row is a multiple of 16 in order to achieve
aligned global memory access. Texture memory can also be
used to store the input vector to utilize the read-only texture
cache in order to achieve performance gains due to input vector
reuse.

3) CNC SpMV Library: In [13], authors present SpMV
package which includes efficient implementation for BCSR
format. The sparse storage format groups non-zero values in
blocks of size BN x BM in order to maximize the memory
fetch bandwidth of GPUs, to take advantage of registers to
avoid redundant fetches (register blocking), and to reducethe
number of indirections due to the reduced size of lookup
tables. Although each indirection results in dependent memory
fetches, it introduces memory latencies that need to be hidden
by the GPU to achieve a good efficiency. We experiment with
implementations of 2x2 and 4x4 blocks for lower and higher
filling ratio.

V. COMBINATION TECHNIQUE FOR SOLVING THE

BLACK -SCHOLESPDE

In this section, we discuss the financial test case chosen for
evaluating the GPU implementations of linear solvers. The
objective is to compute the price of European derivatives ona
d-dimensional basket of risky assets in the multidimensional
Black-Scholes framework.

Let us denoteSi(t) the price of thei-th asset,σi(t) its
volatility, ρij(t) the linear correlation between assetsi andj,
andr the risk-free interest rate. We consider a European option
with maturity T and payoffh(S). The valueV (S, t),S ∈

R
d
+, t ∈ [0, T ] of this option is solution of the following Black-

Scholes partial differential equation:

∂V

∂t
= −

1

2

∑d

i=1

∑d

j=1
ρijσiσjSiSj

∂2V
∂Si∂Sj

−r

d
∑

i=1

Si

∂V

∂Si

+ rV,
(1)

with terminal conditionV (S, T ) = h(S). With constant
parameters, this equation can be reduced to a multidimensional
heat equation. Although very academic, this test case is similar
to the PDEs of more realistic models. See [9] for a large panel
of PDE in finance.

As mentioned earlier, solving PDE (1) in a high-dimensional
case (sayd > 3) is limited by memory restriction since the
problem is affected by the so-called “curse of dimensionality”:
on a regular full grid of mesh size2−n, the discretized problem
grows exponentially with the dimension. The sparse grid
combination technique allows to solve for higher dimension
by reducing the size of the problem. The framework in our
case is as follows. For simplicity, we assume our derivative
contract is a basket up-and-out barrier option. In this case,
the value of the option is zero as soon as one of the assets
crosses a given valueB, so that the PDE (1) can be solved
with homogeneous Dirichlet boundary condition. Let us denote
Ω = [0, B]d as our domain. For each multi-indexi ∈ N

d, we
denoteΩi the Cartesian sparse grid on that domain with mesh

d MC interval l=6 7 8 9 10

2 [15.97-16.04] 16.68 16.49 16.10 16.06 15.99
3 [20.87-20.94] 23.49 22.59 21.69 20.80 20.85
4 [24.63-24.69] 26.98 31.43 NA NA NA
5 [27.61-27.68] 19.6145 NA NA NA NA

TABLE II
NUMERICAL RESULTS. MONTE CARLO CONFIDENCE INTERVALS

COMPUTED USING1E6PATHS AND 25 TIMESTEPS. NOTE THAT MC
PRICES ARE POSITIVELY BIASED(SEE TEXT).

size2−ik in thek-th dimension. The standard finite differences
solution of PDE (1) on the anisotropic gridΩi is denotedṼi.
Then the solutionV CT

n obtained at leveln with the sparse
grid combination technique is:

V CT
n =

n+d−1
∑

l=n

(−1)d−1−l+n

(

d − 1

l − n

)

∑

i1+...+id=l

Ṽi (2)

Therefore, the sparse grid combination technique allows to
build a leveln discretization of the problem of sizeO(2nnd−1)
(on level n) instead of sizeO(2nd) in the full grid case. It
also offers a natural coarse parallelization, since all solutions
Vi summed in equation (2) can be computed independently
from one another. All sub-gridsΩi are solved sequentially a
singleGPU using BiCGStab and CGS solvers. Therefore, the
speedups we are present in Section VI could be enhanced
with a multiple GPU implementation using this “natural”
parallelization.

VI. N UMERICAL RESULTS AND PERFORMANCE

In this section, we discuss the results of a set of experiments
using NVIDIA GPU to demonstrate the performance behavior
of BiCGStab and CGS.

The sequential, double precision versions of BiCGStab and
CGS solvers were developed and experimented on Intel Xeon
E5420, see Table IV. For the dense vector operations we used
BLAS library (1.2-1.3ubuntu3) and supported only CSR sparse
format. The sequential solvers and any other CPU bound code
was compiled using gcc compiler at-O3 optimization level.
The GPU based solvers were executed using Tesla C870 (G80
GPU) with configuration presented in Table IV, connected to
a host x86/Linux system through 16-x PCI Express bus. The
CUDA kernels for SpMV operations were compiled using
NVIDIA CUDA compiler 2.1 (nvcc) to generate the device
code. The device code was compiled with-arch=sm 10 flag
and -O3 optimization level. Note that due to limitations of
Tesla C870, experiments for GPU based solvers were done
with single precision arithmatic.

We consider the test case presented in Section V, with
an up-and-out best-of barrier option ond assets. The payoff
is written h(S) = (maxi Si − K)

+ on the domain[0, B]d.
Our numerical results are presented in Table II. The fol-
lowing parameters have been used to obtain these resuls:
σi = 0.20, ρij = 0.0, r = 0.03, T = 1, K = 100, B = 200.
We solve the PDE using the combination technique at level



d Level Total Time(s) Solver Time(s)

3 6 15.71 15.10
3 7 70.26 65.30
3 8 283.08 242.13
3 9 1155.27 818.10
3 10 5375.96 2553.31

TABLE III
T IME IN SECONDS FOR PRICING A BASKET OF THREE EQUITIES WITH

DIFFERENT REFINEMENT LEVELS.

Feature C870 E5420

Multiprocessors 16 2
Processor cores 128 8
Processor Clock 1.35 GHz 2.6 GHz
Off-chip Memory Size 1.5 GB 4 GB
Peak Performance 500 GFlops 80 GFlops

TABLE IV
ARCHITECTURAL CONFIGURATIONS OFNVIDIA T ESLA C870AND INTEL

XEON E5420.

n = 6, . . . , 10 with 5000 timesteps. The accuracy of our
numerical results is verified by comparison with a Monte Carlo
95% confidence interval obtained with average of100 prices
each computed with1E6 simulation paths and25 timesteps. It
is known that these confidence intervals are positively biased,
since the evaluation of the crossing of the barrier is not
evaluated continuously. Table II shows that convergence is
achieved, at least ford = 2, 3. For error analysis of the
combination technique please refer to [7]. We present the
resulting linear systems ford = 3 and n = 10 in Table V.
For lower dimensions and levels the linear systems are smaller
in size, however, the number of unknowns increases with the
increase in dimensions and approximation level. For instance,
in eight dimensions a coarsest reasonable sparse grid can have
up to 200 million unknowns [3].

For iterative solvers in the experiments, the convergence
tolerance of the iterative methods is set to1E-6. The execution
times using sequential solvers ford = 3 with n = 6, . . . , 10
are presented in Table III. The columnSolver Timerepresents
the time required for solving the linear discrete systems. The
remaining of theTotal Time is spent on construcing partial
grids and combining the subsolutions. It usually remains con-
stant and is independent of parallel or sequential solvers used.
Hence, for the performance evaluation, we only consider the
Solver time. The combined speedups achieved for solving all
the grids using GPU based BiCGStab and CGS are presented
in Figure 4 and Figure 5 respectively. The speedup is computed
as the ratio of the parallel execution time (Tp) using Tesla and
the execution time using one CPU(T1). Overall performance of
these solvers in terms of mega FLOPs (MFLOPs) is presented
in Figure 6 and Figure 7. The total number of FLOPs are
computed as described in Table I.

We evaluate the performance of BiCGStab and CGS with
respect to the underlying SpMV kernels. For the analysis, we
call both the solvers by the SpMV kernel name used (e.g.CSR-

≺ l1, l2, l3 ≻ N NNZ ≺ l1, l2, l3 ≻ N NNZ

≺ 8,1,1≻ 255 763 ≺ 5,3,1≻ 217 1009
≺ 7,2,1≻ 381 1645 ≺ 5,2,2≻ 279 1563
≺ 6,3,1≻ 441 2065 ≺ 4,4,1≻ 225 1065
≺ 6,2,2≻ 567 3195 ≺ 4,3,2≻ 315 1863
≺ 5,4,1≻ 465 2233 ≺ 3,3,3≻ 343 2107
≺ 5,3,2≻ 651 3895 ≺ 6,1,1≻ 63 187
≺ 4,4,2≻ 675 4095 ≺ 5,2,1≻ 93 397
≺ 4,3,3≻ 735 4627 ≺ 4,3,1≻ 105 481
≺ 7,1,1≻ 127 379 ≺ 4,2,2≻ 135 747
≺ 6,2,1≻ 189 813 ≺ 3,3,2≻ 147 847

TABLE V
A SET OF DISCRETE SYSTEMS FORd = 3 AND l = 10 WITH LEVEL OF

DISCRETIZATION IN EACH DIRECTION GIVEN BY THE PERMUTATION OF ≺

l1 , l2 , l3 ≻. N IS DIMENSION OF A MATRIX AND NNZ IS NUMBER OF

NONZEROS. THE TOTAL NUMBER OF DISCRETE SYSTEMS IS85.
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Fig. 4. Speedup for BiCGStab using GPU for increasing problem sizes.
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Fig. 5. Speedup for CGS using GPU for increasing problem sizes.

Scalarstands for a BiCGStab or CGS solver using NVIDIA’s
scalar CSR SpMV kernel). The performance characteristics of
both the solvers follow similar behavior for scalability, hence
in the following discussion we do not distinguish between
both the solvers, if not mentioned otherwise. The other solver
kernels (dot, axpy and scal) in both the solvers are assumed



to take equivalent time for solving a perticular grid.
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Fig. 6. Overall speed (megaflops) of BiCGStab using GPU.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 6  7  8  9  10

M
F

LO
P

s

Levels

CSR1x1
BCSR2x2
BCSR4x4

CSR-vector
CSR-vector-cache

CSR-scalar
CSR-scalar-cache

COO-vector
COO-vector-cache

COO-scalar
HYB

HYB-cache
CSR-Aligned Access

CSR-Aligned Access -cache
CSR-Thread mapping

CPU-CSR

Fig. 7. Overall speed (megaflops) of CGS using GPU.
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Fig. 8. Histogram h[t] of Speedups achieved by GPU based BiCGStab using
NVIDIA-CSR-vectorkernel for solving discrete systems represented by Table
V.

With CNC library: BCSR2x2and BCSR4x4kernels take
advantage of square dense block patterns in a sparse matrix,
saving in locations and reduction in indirect addressing. The
sparse grids resulted in the combination technique does not
exhibit any of such pattern. This format leads to register level
data reuse resulting coarse grained parallelism, however in
our case, suffers from non-optimal global memory accesses.
This attributes to its poor performance compared to other
variants of CSR formats that we investigated.CSR1x1 is
uses one thread per row and 16 threads per block. The
equivalent NVIDIA CSR-scalarkernel uses 256 threads per
block.CSR1x1comparatively results in poor thread granularity
due to more number of blocks.CSR1x1results in an inefficient
utilization as the multiprocessor spends a large fraction of
time in block switching. Optimal block size (and grid size)
is necessary to ensure maximal utilization of the resources.

With NVIDIA’s library: The CSR-vector kerneluses one
32-thread warp per matrix row. This approach benefits from
contiguous global memory access. However, as our testcases
have small scale, the resulting matrices have fewer than 32
non-zeros per row, which causes underutilization of this kernel.
Although this kernels outperforms our other SpMV consid-
erations. A CSR-scalarwhich uses one thread per matrix
row performs poorly compared to its vector counterpart. It
uses 256 threads per block and outperformsCSR1x1which
uses 16 threads per block. TheCOO-vectorkernel is based
on segmented reduction. The COO format has the worst
computational intensity of all. The segmented reduction op-
eration seems more expensive than alternative approaches that
distribute work across threads of execution.COO-scalarap-
proach which allocates only one thread has the worst computa-
tional complexity, equivalent of sequential CSR. Nevertheless,
COO-vectorkernel can be used to compensate the deficiencies
of the other kernels. TheHYBformat couples the speed of ELL
and the flexibility of COO. The ELL alone cannot be used in
our matrices as there are very small number of nonzero entries
per row. But when combined withCOO-vectorin HYB kernel
we observe the performance improvement overCOO-vector
andCOO-scalarkernels.

With IBM’s Library: We experiment with two main compile-
time optimizations proposed in [14],CSR-Aligned Access,
aligned global memory accesses, andThread Mapping, op-
timized thread mapping, for the CSR format.Aligned Access
kernel is similar toNVIDIA-vectorbut uses 16-thread warp per
matrix row and makes alignment adjustments. The matrices
resulting from combination technique have very low number
of nonzeros per row, usually less than 16, which contributes
to the poor performance of these optimizations.

In terms of speed, the performance of the CPU remains
constant (around 4 MFLOPs) while the performance of GPU
based solvers boosts with the increasing problem sizes, see
Figure 6 and Figure 7. CPUs generally mask the latency with
on-chip cache, while GPUs mask the latency with a large num-
ber of threads and assigned work load. The increasing work
load can promise to hide the latency to do texture accesses.
With the problem sizes at our disposal, most of the cached



kernels fail to hide the latency causing unexpected slowdown.
For small grids, both CPU and GPU implementations exhibit
equivalent performance. Figure 8 displays a histogram which
displays the distribution of number of grids as per the speedups
achieved using GPU based solver. We observed that solvers
achieve better speedups for the grids with large unknowns than
for the smaller grids. For instance, withd = 3 and n = 15,
one of the sparse grids has configuration ofN = 12285
and NNZ = 53229, which achieves speedup of 98 using
CSR-VectorBiCGStab. The cached versions also proved to be
beneficial in this case.

VII. C ONCLUSION AND FUTURE WORK

The sparse grid method is a practical tool to solve high
dimensional PDEs numerically. In this paper we presented
GPU based parallel implementations of Krylov subspace based
iterative solvers for solving several small sized systems arising
from this method. The efficiency and performance of various
SpMVs and therefore of the linear solvers is demonstrated
by numerical experimental results carried out on a NVIDIA
Tesla device. Our results show that the choice of sparse format
is not only important for scalability of iterative solvers to
solve the sparse grids but the efficient implementation and
parameter tuning of matrix-vector kernels is also essential
for maximal performance on GPUs. The solution using grids
with low approximation levels results in smaller problem
sizes attributing to the overhead of the parallel platform and
performs poorly compared to the sequential execution. We
believe that with higher dimensions, the true potential of GPUs
for high performance computing can be effectively tapped.

Further, in order to exploit the inherent parallelism in the
combination technique, it is essential to distribute the solving
of sparse grids over a cluster of GPUs. Such scheme poses
several interesting future research directions. The variable
times needed to solve the discrete systems would require either
a reasonable distribution scheme or ways to decompose large
systems over multiple GPUs. Future work will also include
investigating the performance of these solvers on latest double
precision NVIDIA devices.
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