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Abstract: In this note, we consider a two-class priority queueing system with 
Poisson arrivals, general service time distribution and one server, in which 
customers that are not currently being served may leave the queue according to 
exponentially distributed patience times, i.e., a M1, M2/G/1 + M system using a 
generalised Kendall’s notation. We expand the classic methodology to derive 
analytical formulas for the completion times in such a system, using preemptive 
repeat different and preemptive repeat identical disciplines. Known average 
completion times for priority queues without impatience are retrieved as limit 
cases. 
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1 Introduction 

Queueing systems able to deal with several types of prioritised customers and/or their 
impatience are well known to be applicable to a wide range of fields. Among recent 
contributions, let us mention the use of priority queueing systems in inventory 
management (Zhao and Lian, 2011), IT support management (Zeltyn et al., 2009; 
Bartolini et al., 2012), or cognitive radio networks (Kim, 2012). Impatience, i.e., the 
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possibility that a customer leaves the queue without having received a full service,  
is a key feature in call centres management [see e.g., Aksin et al. (2007) for a  
multi-disciplinary review of the field] or healthcare management (Wang, 2004) for 
example. Queueing models involving both priority and impatience raise complex 
challenges. Some of them are tackled in the literature of design, control and scheduling of 
queueing systems [see e.g., Ata and Tongarlak (2012) and Kim (2012) for recent 
contributions]. Some of these results may be applicable to call centres or healthcare 
management [e.g., Jouini et al. (2010) among others]. 

This note deals with the exact analysis of a priority queue with impatient customers 
and a preemptive discipline. We consider a general two-class priority queueing system 
with Poisson arrivals, general service time distribution and one server. We assume  
that class-1 customers are the highest-priority customers, class-2 customers the  
lowest-priority ones and that a preemptive discipline is used. Each customer in the queue, 
i.e., all customers in the system except the one currently being served, may leave the 
system at any time. This is the impatience/reneging phenomenon. Patience times of 
customers that leave the queue without having completed service are assumed to be 
exponentially distributed. Such a system might therefore be noted M1, M2/G/1 + M using 
a generalised Kendall’s notation. 

Explicit analysis of the stationary properties of such a system has not been fully 
completed yet. In this paper, we contribute to this study by deriving an analytical form of 
the Laplace-Stieltjes transform of the completion times in this system. The notion of 
completion time in such a system refers to the length of the time interval between the 
moment a customer starts service and the moment he leaves the system, which may be 
upon service completion or out of impatience. Results are obtained for both preemptive 
repeat different and preemptive repeat identical disciplines. Classic results of completion 
times in priority queues without impatience may be retrieved as limit cases. 

1.1 Notations 

Throughout the paper we will use the following notations. N is the set of natural integers, 
and N* = N \ {0}. For any complex number p ∈ C, Re(p) is its real part. For any positive 
probability measure μ on the positive half-line μ̂  denotes its Laplace-Stieltjes transform 
(sometimes abbreviated LST from now on), i.e. 

ˆ ( ) ( ),   ,  ( ) 0.ptp e d t p pμ μ−

+
= ∀ ∈ ≥∫R C Re  (1) 

μ  denotes the (eventually infinite) expectation of the probability distribution μ. Finally, 
all random variables are assumed to be defined on some probability space (Ω, F, P). 

2 Literature review 

Priority disciplines have been largely addressed in queueing theory, as well as 
impatience/reneging/balking in a single queue, but few studies address the exact analysis 
of both difficulties at the same time. 

As for priority queues without impatience, pioneering works of Gaver (1962) and 
Chang (1965) introduce the notion of completion times, which is defined as the length of 
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the time interval between the time a service starts and the time it is completed. Classic 
analysis goes on with the analysis in stationary state of queues sizes and waiting times, 
defined as the length of the time interval between the arrival of a customer in the queue 
and the moment he enters service. Standard results on priority queues may be found in 
textbook form in, e.g., Jaiswal (1968) or Takagi (1991). 

There is a large body of literature on the impatience phenomenon in a queue of 
customers without priority [note that we focus in this paper on single-server queues, but 
impatience/reneging is obviously also of interest in a multi-server setting, see e.g., 
Choudhury and Medhi (2011)]. Baccelli et al. (1984) derives stability conditions for 
general queues with impatience. Impatience in these queues may refer to the waiting time 
(in which case a customer stays until service completion once its service has started) or to 
the sojourn time (in which case an impatient customer may leave even while being 
served). Boxma et al. (2011) recently proposed to write G/G/1 + Gw in the first case and 
G/G/1 + Gs in the later one. Daley (1965), building on Kovalenko (1961), derives an 
integral equation for the waiting time of a customer, defined as the length of the time 
interval between its arrival in the queue and the moment he enters service or the moment 
he leaves out of impatience, whichever happens first. In particular, waiting times in the 
cases of deterministic (M/G/1 + Dw) and exponential (M/G/1 + Mw) impatience 
distributions are studied. The busy period of such systems, i.e., the time interval between 
the arrival of a customer in an empty system and the moment the system is empty again, 
will be of particular importance in this paper. Bae et al. (2001) provides the expected 
busy period of the M/G/1 + Dw queue. Also using deterministic impatience times,  
Xiong et al. (2008) provides an exact analysis of the special case in which service times 
are two-stage hyper-exponentially distributed (M/H2/1 + Dw). Rao (1967) is a pioneer 
paper in which the Laplace-Stieltjes transform of the busy period of the M/G/1 + Mw 
queue is derived. Very recently, Brandt and Brandt (2011) retrieves this result as a special 
case of a joint analysis of the workloads and busy times of such systems. The ‘balking’ 
case, or ‘restricted accessibility’ case, in which the customer does not enter the queue if 
the workload seen upon its arrival exceeds his patience, is investigated in Perry et al. 
(2000) with a deterministic patience. Boxma et al. (2010) extends this study, and among 
other results derives the Laplace-Stieltjes transform of the busy period in an M/G/1 + Mw 
queue in the restricted accessibility case. Very recently, Boxma et al. (2011) sheds some 
new light on the M/G/1 + Gw and M/G/1 + Gs queue, analysing it with a modified system 
in which customers that ran out of impatience stay in the system with an arbitrarily small 
deterministic service time. This analysis provides, among other results, the distribution of 
the number of customers in the queue and the distribution of the busy period of the 
system. Finally, let us mention that Ward (2012) reviews asymptotics of such systems in 
a recent survey. 

Research mixing both a fixed priority discipline and impatience in the same system is 
much less abundant, especially when it comes to the exact analysis of the queueing 
system. Choi et al. (2001) addresses a two-class problem, in which the first class has 
higher-priority and deterministic impatience, whereas the lower-priority class has no 
impatience. All inter-arrival times distributions are exponential, including service. 
Studied systems are thus M1, M2/M/1 + Dw and M1, M2/M/1 + Ds, in which the lower 
priority class has no impatience. Joint distribution of queue sizes and Laplace-Stieltjes 
transforms of total response times for both classes of customers are obtained. Brandt and 
Brandt (2004) generalises the previous results to a general distribution of patience time, 
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i.e., in the M1, M2/M/1 + Gw case. Note however that this is still assuming an exponential 
service time and no impatience for the lower-priority customers. The system studied by 
Iravani and Balcioglu (2008) is closer to the one under scrutiny here: a two-class problem 
with general service time distribution is studied, in which both classes exhibit 
exponentially distributed impatience. Using a level-crossing method, waiting time 
distributions are obtained, assuming a preemptive-resume policy in which a customer that 
started service may not leave the system. 

The system we analyse here differs from the previous ones in several key points. 
Contrary to Choi et al. (2001) or Brandt and Brandt (2004), service time is general, and 
an important feature is that all customers, including lower priority customers, exhibit 
impatience. Moreover, as opposed to Iravani and Balcioglu (2008), our system allows 
that a class-2 customer may leave the system even if its service started: if such a 
customer, who started service, is left by the server called by a class-1 priority customer 
(preemptive discipline), then it does not wait indefinitely but may leave the system out of 
impatience. In other words, in our system, impatience of the class-1 customers applies to 
their waiting time, and impatience of the class-2 customers applies to their sojourn time, 
with the restriction that they cannot leave while being served. This feature is very 
realistic in many standard queueing applications such as call centres, and is not taken into 
account in cited works, which assume that any customer starting service will stay in the 
system until its service is completed, even during a preemption, however long that may 
be. Thus, our system has two types of reneging customers: those that leave before they 
even start service, and those that leave out of impatience after their service started but 
was interrupted. From a customer satisfaction point of view, the latter case might be the 
worst (most frustrating) case. Thus in what follows, we compute ‘completion’ times  
(in a generalised sense) for all class-2 customers that have started service, whichever way 
they left the system. 

Note that, as usual with two-class priority queues with preemptive discipline,  
high-priority customers are not influenced by lower-priority customers. Therefore, all 
class-1 customers that start service stay in the system until completion, since they cannot 
be preempted. For these customers, there cannot be any reneging during a preemption, 
the phenomenon that we will study for lower priority customers. Therefore, their 
completion time distribution is the service time distribution. Moreover, the queueing 
system formed by the sole customers of class-1 is obviously a standard M/G/1 queue with 
exponential impatience of the customers waiting in line. Such a system is exactly the one 
studied by Rao (1967), where the Laplace-Stieltjes transform of the busy period of the 
system is derived. We use this result to derive the completion times of class-2 customers. 

The remainder of the note is organised as follows. Section 3 defines notations 
describing the model and states some useful results for the subsequent computations. 
Section 4 proves analytical formulas for the Laplace-Stieltjes transforms of completion 
times of class-2 customers when a preemptive repeat different discipline is used. Our 
approach follows and generalises the classic study of completion times in priority queues 
used by Gaver (1962), Chang (1965), Jaiswal (1968) and Takagi (1991). We show that 
the classic results without impatience are retrieved as limit cases of the formulas we 
obtain. Section 5 states similar results for the preemptive repeat identical discipline. Since 
it is very close to the previous one, the proof is only sketched. Finally, Section 6 provides 
specific formulas in the particular case where service times are exponentially distributed. 
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3 Model and preliminary results 

We consider a single-server two-class priority queueing system. Arrivals of class-k 
customers, k ∈ {1, 2}, follow independent Poisson processes with parameter λk. A  
unique server deals with the queue, and service is based on a first-come-first-served 
discipline. Service times are assumed to be a set of mutually independent random 
variables, identically distributed with probability distribution B with positive support. 
Furthermore, class-1 customers are the highest-priority customers, class-2 customers  
the lowest-priority ones, and a preemptive discipline is used. Consequently, class-2 
customers cannot be served as long as there are customers of class-1 in the system; and if 
a class-1 customer enters the system while the server is attending a class-2 customer, then 
he is immediately attended by the server, and service for the class-2 customer is 
interrupted. Finally, customers of any class that are not currently being served and that 
have not yet completed service may leave the queue at any time. If a customer leaves 
before its service is completed, the time interval between its arrival and its departure is 
assumed to be distributed according to an exponential distribution with parameter θ 
strictly positive. Let ,  {1, 2}k

kv kλ
θ= ∈  denote the arrival rate of customers of class k 

normalised by the impatience rate 0. 
As observed above, the queuing system formed by the sole customers of type 1 

(referred to as the ‘1-queue’) is a well known M/G/1 queue with exponential impatience 
of the customers waiting in line. Following Rao, (1967, Section 5), one can derive for 
such a queue the Laplace-Stieltjes transform of the distribution of the length of the busy 
period starting with one customer, i.e., the time interval between the arrival of a class-1 
customer arriving in an empty 1-queue and the first time this 1-queue becomes empty 
again (idle server). Let Ξ1 denote the probability distribution of such a busy period.  
Rao [1967, equation (19)] states that the Laplace transform 1Ξ  is written using notations 
introduced above: 

1
11

1
1

11

( ) ( ) ( )
!( )

1 ( )
!

r

rr
r

rr

vB p p B p r
rp

v p
r

θ
∞

−=

∞
−=

+ +
Ξ =

+

∑
∑

ψ

ψ
 (2) 

where we have defined: 

( )
0

( ) .1 ( )
r

r
j

p B p jθ
=

= − +∏ψ  (3) 

Note that a new derivation of this result has recently been proposed by Brandt and Brandt 
(2011). By differentiation at the origin, Rao [1967, equation (22)] is able to compute the 
mean length 1Ξ  of this busy period: 
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We now give results concerning conditional distribution of random variables compared to 
exponentially distributed random variables. Although these are straighforward results, we 
choose to state them as a lemma since we will explicitly rely on them for the 
computations in the proofs to follow: 

Lemma 1: Let T be a random variable with exponential distribution with parameter X. 
Let Z be a random variable with general probability distribution FZ with positive support. 
Z and T are assumed to be independent. Then: 

1 conditionally on being lower than Z, the distribution of T admits the conditional 
LST: 

|
1 ( )

( )
1 ( )

Z
T T Z

Z

F p
F p

p F
λλ

λ λ
≤

− +
=

+ −
 (5) 

2 conditionally on being lower than T, the distribution of Z admits the conditional 
LST: 

|
( )

( )
( )

Z
Z Z T

Z

F p
F p

F
λ

λ
≤

+
=  (6) 

3 conditionally on being greater that T, the distribution of Z admits the conditional 

|
( ) ( )

( ) .
1 ( )

Z Z
Z Z T

Z

F p F p
F p

F
λ

λ
≥

− +
=

−
 (7) 

Proof: Direct computations. � 

4 Completion times of class-2 customers in the case of a preemptive repeat 
different discipline 

In this section, we assume that a preemptive repeat different discipline is used, i.e., when 
a class-2 customer that started service earlier prior to be preempted resumes service, it is 
assumed its remaining service time is chosen anew following probability distribution B 
and does not depend on previous time spent being served before. Completion time is 
defined as the time interval between the first time a customer enters service and the time 
it leaves the system. Let us recall that in all the cited references, the latter event may only 
be service completion. In our case however, a customer that started service, but was 
denied service completion because of the arrival of higher priority customers, may leave 
the system out of impatience. We will thus distinguish three completion times (for class-2 
customers): 

• 2
SC  denotes the probability distribution of the time interval between the first time a 

customer enters service and the time of its service completion, conditionally on this 
service completion 
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• 2
RC  denotes the probability distribution of the time interval between the first  

time a customer enters service and the time of its departure out of impatience while 
waiting for the end of a busy period in the virtual 1-queue, conditionally on this 
reneging 

• C2 denotes the probability distribution of the time interval between the first time a 
customer enters service and the time it leaves the system, unconditionally. 

Let us consider one customer of class-2 entering service. Obviously, if A denotes the 
event that this customer leaves after having received full service, then: 

2 2 2( ) (1 ( )),S RC C A C A= + −P P  (8) 

which is immediately translated by linearity in terms of LST. Let An, n ∈ N, be the event 

‘the customer is preempted n times and then completes service’ and Bn, n ∈ N, be the 

event ‘the customer is preempted n times and then leaves out of impatience during the nth 
preemption’. After i – 1 preemptions, at the time of the ith service re-entrance, if Si 
denotes the service time (distributed according to B), Ti the time to the (virtual)  
next preemption (exponentially distributed with parameter λi), then there is a i + 1th 
preemption with probability 

( ) ( )11 .i iT S B λ≤ = −P  (9) 

Similarly, upon the ith preemption, the probability that the customer reneges during this ith 
preemption is 11 ( ).θ−Ξ  Because of the independence of the service times and reneging 
times, we straightforwardly have a geometric framework: 

( ) ( )( ) ( ) ( )1 11, ,1 ( )
n n

nn A BB λλ θ∀ ∈ = − ΞPN  (10) 

( ) ( )( ) ( ) ( )1*
1 11, .1 ( ) 1 ( )

n n
nn B B λ θ θ

−
∀ ∈ = − Ξ −ΞPN  (11) 

Therefore, the probability that the class-2 customer considered here receives full  
service is 

( ) ( )
( )( )

1

10 1

( ) ,
1 ( ) 1

n
n

B
A A

B

λ

θ λ

∞

=

= =
−Ξ −

∑P P  (12) 

where 1( )θΞ  is given by equation (2). The probability that it leaves out of impatience 
during preemption is 

( )
1

( ) 1 ( ).nn
B B A

∞

=
= = −∑P P P  

We now extend the classic computations of Laplace-Stieltjes transforms of completion 
times to our case with impatience. Let us assume that the class-2 customer entering 
service is preempted exactly n times by higher-priority customers before leaving, either 
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after service completion (event An, n ≥ 0) or during the nth preemption (event Bn, n ≥ 1). 
Its completion time can be written conditionally on An: 

2
1 1

,
n n

i i n
i i

C α ξ
= =

= + +∑ ∑ ε  (13) 

and conditionally on Bn: 
1

2
1 1

,
n n

i i n
i i

C α ξ γ
−

= =

= + +∑ ∑  (14) 

where αi is the time spent in service before the ith preemption, ξi the length of the ith 
preemption, εn is the non-preempted service time of the customer on the event An, and γn 
is the time interval between the nth preemption and the departure of the customer out of 
impatience on the event Bn. {αi}i and {ξi}i are both families of independent and 
identically distributed random variables. Therefore, we have: 

( ) ( )2 1 1 ,n
n n

ppC p p
n n n nA A A Ae e e eα ξ −− − − ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦E E E E ε  (15) 

and 

( ) ( )2 1 1
1

.n
n n

ppC p p
n n n nB B B Be e e e γα ξ

−
−− − − ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦E E E E  (16) 

Now, {αi}i, ξi}i, εn and γn all have a distribution that belongs to one of the three cases of 
Lemma 1, which leads to: 

( )
( )

1 1
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1 1

1

1
p p

n n
B p

A Be e p B
α α

λλ
λ λ

− −
− +
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1 1
1

1
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( )

p p
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pA Be eξ ξ θ
θ

− −
Ξ +

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ Ξ
E E  (18) 

( )
( )

1

1

,np
n

B p
Ae

B

λ

λ
−

+
⎡ ⎤ =⎣ ⎦E ε  (19) 

1

1

1 ( ) .
1 ( )

np
n

pBe p
γ θ θ

θ θ
−

−Ξ +
⎡ ⎤ =⎣ ⎦ + −Ξ

E  (20) 

Finally, taking the LST of equations (13) and (14) and combining the result with 
equations (8), (10) and (11) yields the result that we state in the following proposition. 

Proposition 1: In the M1, M2/G/1 + M queue with preemptive repeat different discipline, 
the Laplace transform of the distribution 2

SC  is given by: 
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The Laplace transform of the distribution 2
RC  is given by: 

( )
( )
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Finally, the Laplace transform of the unconditional distribution C2 is given by: 
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Note that equations (21) and (23) are actually still valid for a class-1 customer, since 

letting ‘λ0’ → 0 yields 1 1 .
S

C C B= =  

Direct differentiation yields average completion times. The average value 2
S

C  of the 
completion time of a class-2 customer leaving the system after receiving full service is: 

( )
( ) ( )( )

( )( )
( )( )

1 11
1 11

2
1 11 1 1

1 ( ) ( )1
( ) 1 .

1 ( ) 1 ( )1 1
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θ θλ λλ θ
λ θ θλ λ

⎛ ⎞′Ξ −Ξ−′ ⎜ ⎟Ξ − ⎝ ⎠= +
−Ξ −Ξ− −

 (24) 

This result is a generalisation of the known result without impatience, which we may 
retrieve as a limit case. By letting θ → 0 in equation (24), we obtain: 

( )
( )

01
2 1

0 11

1 1
lim ,

S B
C

Bθ

λ
λλ→

− ⎛ ⎞+ Ξ= ⎜ ⎟
⎝ ⎠

 (25) 

where 0
1 1/ (1 )B BλΞ = −  is the mean busy period of the 1-queue without impatience, i.e., 

the limit of 0Ξ  defined at equation (4) as θ → 0. Equation (25) is the known  
average completion time in a priority queue without impatience, see e.g., Jaiswal [1968, 
Chapter 4, equation (7.8)] or Takagi [1991, Chapter 3, equation (4.70a)]. 
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The average value 2
RC  of the completion time of a class-2 customer leaving the 

system out of impatience while its service is being preempted is: 

( )
( )

( )

( )( )

11 1

111
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1 1

( )1
1 1 ( )1 .

1 ( ) 1
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B B
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= +
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Letting θ → +∞ in equation (26) obviously gives: 
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( )
1
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1lim ,
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λλ→+∞

= +
−

 (27) 

which is exactly the expectation of a random variable with density 
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( )

1
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1 ( )
,

1

xe B x

B

λλ

λ

− −

−
 (28) 

i.e., a random variable with exponential distribution with rate λ1, conditionally on the fact 
that it is lower than an independent random variable with distribution B. In other words, 
if the impatience is high, a customer entering service will leave as soon as it is 
preempted. 

Finally, the average (unconditional) completion time 2C  is: 

( )( ) ( )( )
( )( )( )

111
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11 1

11 1 ( )
.

1 ( ) 1

vB
C

B

λ θ

λ θ λ

+− −Ξ
=

−Ξ −
 (29) 

Contrary to the previous averages (24) and (26), this result does not depend on the 
derivatives of the LST of the service time and busy period distribution, which will lead to 
simple formulas in Section 6. 

5 Completion times of class-2 customers in the case of a preemptive repeat 
identical discipline 

We now compute the Laplace transform of the completion time distribution in the case of 
a preemptive repeat identical discipline. In this discipline, service time is determined the 
first time a customer enters service and will stay the same if the customer has to re-enter 
service after preemptions. Therefore, we obtain the Laplace transforms of completion 
times using the same proof as in the previous section, conditioning this time on the 
service time S1. Result is stated in the following proposition. 

Proposition 2: In the M1, M2/G/1 + M queue with preemptive repeat identical discipline, 
the Laplace transform of the distribution 2

SC  is given by: 
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∫  (30) 

The Laplace transform of the distribution 2
RC  is given by: 
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The Laplace transform of the distribution C2 is given by: 
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 (32) 

Proof: The proof follows closely the one of the previous section, while keeping 
intermediary results conditional on S1, the service time S1 that is determined the first time 
the customer enters service. Because of this similarity, we only give the main 
computational steps of the proof. Using notations introduced in Section 4, we have: 
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and using Lemma 1 we obtain: 
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Therefore, 
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which then gives equation (32). Equations (30) and (31) follow by computations similar 
to the ones already described in the proof of Proposition 1. � 

By differentiation, we obtain the average completion times for the preemptive repeat 
identical discipline. The average value 2

SC  of the completion time of a class-2 customer 
leaving the system after receiving full service is: 
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The average value 2
RC  of the completion time of a customer of type k leaving the system 

out of impatience while its service is being preempted is: 

( )

( ) ( )( )

1 1

1 1

1 1 1 1

1
2

111

1

1

1 1 ( )
1 ( )( ) 1 1

 .
1 ( )1 1

S
R

S

S S

e
C

e
S

e e

λ

λ

λ λ

θ
θ λ θθ

θ

−

−

−

′ ⎡ ⎤Ξ
= + − ⎢ ⎥

−ΞΞ − ⎢ ⎥−⎣ ⎦
⎡ ⎤

− ⎢ ⎥
−Ξ− −⎢ ⎥⎣ ⎦

E

E

 (41) 

Note that by letting θ → 0 in equation (40), we retrieve results known in the case of 
priority queues without impatience: 

[ ]1 1
0
120 1

1
lim ,1

S SC eλ
θ λ→

⎛ ⎞+ Ξ= −⎜ ⎟
⎝ ⎠

E  (42) 

which is for example found in Jaiswal [1968, Chapter 4 equation (7.5)] or Takagi [1991, 
Chapter 3 equation (4.67a)]. 

6 An application to the M1,..., MK/M/1 + M queue 

In this section, we consider the case in which service times are exponentially distributed 
with parameter using the preemptive repeat different discipline. We adapt some of the 
previous results to this special case. It is important to remark that in the exponential 
service case, the model can easily be generalised to K-class priority queue with 
impatience, K ≥ 2. Indeed, for any integer k ≥ 2, all customers of class in {l,..., k – 1} 
form a (virtual) ‘l → k – 1’-queue, using the terminology previously introduced, which, 
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thanks to the memoryless properties of the exponential distribution, is a M/M/l + M single 
queue with impatience. This would not be true with a general distribution. We introduce 
the scaled parameters: 

1

1 1
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,     ,    .
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→ −
=

= = =∑  (43) 

The LST of the service times distribution is thus: 

( ) . B p
p
δ

δ
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+

 (44) 

Inserting this into equations (2) and (12), we obtain after some simplifications the 
probability that a class-k customer entering service will receive full service (event Ak): 
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where Γ denotes the Euler Gamma function and Γy(x) its incomplete lower version. 
Figure 1 shows the probability that a class-k customer entering service will receive full 
service, for different values of δ. 

Figure 1 Probability P(Ak) that a class-k customer entering service in the  
M1,..., MK/M/1 + M queue completes its service, as a function  
of ν1→k–1 and for several values of δ (θ = 1) 

 

P(Ak) obviously increases with δ: the larger δ, the smaller the service time, the smaller 
the probability his service is preempted, the larger the probability he completes service, 
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all other things being equal. P(Ak) obviously decreases with ν1→k–1: the larger ν1→k–1, the 
larger the number of preemptive customers with higher priority, the lower the probability 
to complete service, all other things being equal. In the special case δ = l, we have 

1 1

1 1

1( ) k

k

k eA
ν

ν
→ −

→ −

−=P  (full line). 

Average completion times S
kC  and R

kC  in this special case do not yield strikingly 
simple results, although writable in terms of special hypergeometric functions. However, 
we obtain afters some rearrangements of terms a simple form for the (unconditional) 
average completion time of a class-k customer entering service: 
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Figure 2 plots this average time spent until service completion or reneging by class-k 
customer entering service, as functions of ν1→k–1. 

Figure 2 Average completion time kC  for a class-k customer entering service in the  
M1,..., MK/M/1 + M queue as a function of ν1→k–1 and for several values  
of illustrating regimes of service times δ (θ = 1) 

 

Obviously, kC  decreases with δ. If δ = l, then service and patience times have the same 

average value, which as a consequence is also the average completion time: 2 1/C θ=  
(full line). If δ < l, then the average service time is larger than the average patience time 
of the customers. Therefore, kC  is actually larger for customers with smaller ν1→k–1, i.e., 
higher-priority customers (dotted line). Indeed, since customers do not abandon while 
being served, higher-priority customers, which have a larger probability to receive full 
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service, also have a larger unconditional completion time. If δ > l, then the situation is 
reversed: the average service time is smaller than the average patience time of the 
customers, and therefore lower-priority customers have a larger average completion time 
that higher-priority ones. In all case, kC  tends to l/θ as ν1→k–1 → +∞, since the 
probability P(Ak) of service completion goes to 0 as ν1→k–1 → +∞. 

7 Conclusions 

In this note, we provide explicit analytical formulas for the Laplace-Stieltjes transforms 
of the completion times of customers entering a two-class priority queue with preemptive 
discipline and exponential impatience. An interesting feature of the system considered is 
the possibility for a preempted customer to leave out of impatience during preemption. 
To our knowledge, this feature has not been previously considered in the exact analysis 
of priority queues with impatience. These results may have consequences in two 
directions. Firstly, analysis of completion times greatly helped the analysis of queueing 
systems without impatience. In a similar way, our results will hopefully prove helpful in 
further exact analysis of the stationary state of priority queues with impatience. Such 
results are still rare and analysis of these systems often resorts to simulation or 
asymptotic approximations for now. Secondly, the results on completion time may have 
consequences in solving strategy problems in queueing systems from a customer point of 
view. Using our results, a low priority customer knows the distribution of the time 
between the moment its (same priority) predecessor starts service and the moment he will 
actually be the first-in-line within his priority queue. Future work will show how such 
knowledge may be useful in strategic queueing problems. 
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