Interest rates stochastic models

Ioane Muni Toke

Ecole Centrale Paris
Option Mathématiques Appliquées
Majeure Mathématiques Financières

December 2010 - January 2011
Course outline

Lecture 1 Basic concepts and short rate models
Lecture 2 From short rate models to the HJM framework
Lecture 3 Libor Market Models
Lecture 4 Practical aspects of market models - I
 (E.Durand, Société Générale)
Lecture 5 Practical aspects of market models - II
 (E.Durand, Société Générale)
Useful bibliography

This short course uses material from:

- Original research papers (references below).
Part I

Basic concepts
Spot interest rates

- \(r(t) \): Instantaneous (interbank) rate, or short rate.
- \(P(t, T) \): Price at time \(t \) of a \(T \)-maturity zero-coupon bond
- \(R(t, T) \): Continuously-compounded spot interest rate

\[
R(t, T) = -\frac{\ln P(t, T)}{T - t} \quad \text{i.e.} \quad P(t, T) = e^{-R(t, T)(T-t)} \quad (1)
\]

- \(L(t, T) \): Simply-compounded spot interest rate

\[
L(t, T) = \frac{1 - P(t, T)}{P(t, T)(T - t)} \quad \text{i.e.} \quad P(t, T) = \frac{1}{1 + L(t, T)(T - t)} \quad (2)
\]

- \(Y(t, T) \): Annually-compounded spot interest rate

\[
Y(t, T) = \frac{1}{P(t, T)^{1/(T-t)}} - 1 \quad \text{i.e.} \quad P(t, T) = \frac{1}{(1 + Y(t, T))^{(T-t)}} \quad (3)
\]
Term structure of interest rates

Forward interest rates

- Forward-rate agreement: exchange of a fixed-rate payment and a floating-rate payment
- \(L(t, T, S) \): Simply-compounded forward interest rate

\[
L(t, T, S) = \frac{1}{S - T} \left(\frac{P(t, T)}{P(t, S)} - 1 \right)
\]

i.e. \(1 + (S - T)L(t, T, S) = \frac{P(t, T)}{P(t, S)} \) \((4) \)

- \(f(t, T) \): Instantaneous forward interest rate

\[
f(t, T) = -\frac{\partial \ln P(t, T)}{\partial T}
\]
i.e. \(P(t, T) = \exp \left(-\int_t^T f(t, u)du \right) \) \((5) \)
Swap rates

- Exchange of fixed-rate cash flows and floating-rate cash flows
- Exchanges at dates $T_{\alpha+1}, \ldots, T_\beta$, with $\tau_i = t_i - T_{i-1}$
- Value at time t of a receiver swap:

\[
\Pi^{RS}(t, \alpha, \beta, N, K) = -N(P(t, T\alpha) - P(t, T\beta)) + N \sum_{i=\alpha+1}^{\beta} \tau_i KP(t, T_i)
\]
(6)

- Swap rate

\[
S_{\alpha,\beta}(t) = \frac{P(t, T\alpha) - P(t, T\beta)}{\sum_{i=\alpha+1}^{\beta} \tau_i P(t, T_i)}
\]
(7)

- Link with simple forward rates

\[
S_{\alpha,\beta}(t) = \frac{1 - \prod_{j=\alpha+1}^{\beta} \frac{1}{1+\tau_j L(t, T_{j-1}, T_j)}}{\sum_{i=\alpha+1}^{\beta} \tau_i \prod_{j=\alpha+1}^{i} \frac{1}{1+\tau_j L(t, T_{j-1}, T_j)}}
\]
(8)
Caps, floors and swaptions

- **Cap**: Payer swap in which only positive cash flows are exchanged
- **Floor**: Receiver swap in which only positive cash flows are exchanged
- **Caplet (floorlet)**: One-date cap (floor), i.e. contract with payoff at time T_i
 \[N_{T_i} [L(T_{i-1}, T_i) - K]^+. \]
 \[(9) \]
- **Swaption**: A European payer swaption is an option giving the right to enter a payer swap (α, β) at maturity T, i.e. contract with payoff at time T if $T = T_\alpha$
 \[N \left(\sum_{i=\alpha+1}^{\beta} \tau_i P(T_\alpha, T_i) [L(T_\alpha, T_{i-1}, T_i) - K] \right)^+. \]
 \[(10) \]
Part II

Short-rate models
Table of contents

1. The Vasicek model
2. The CIR model
3. The Hull-White (extended Vasicek) model
Table of contents

1. The Vasicek model
2. The CIR model
3. The Hull-White (extended Vasicek) model
The Vasicek model

Model definition

Original paper

Dynamics of the short rate

Short rate $r(t)$ follows an Ornstein-Uhlenbeck process

$$dr_t = \kappa[\theta - r_t]dt + \sigma dW_t$$

with κ, θ, σ positive constants.
Dynamics of the short rate

Proposition

In the Vasicek model, the SDE defining the short rate dynamics can be integrated to obtain

\[r(t) = r(s)e^{-\kappa(t-s)} + \theta(1 - e^{-\kappa(t-s)}) + \sigma \int_s^t e^{-\kappa(t-u)} dW_u \]

(12)

Short rate \(r(t) \) is normally distributed conditionally on \(\mathcal{F}_s \).
Price of zero-coupon bonds

Proposition

In the Vasicek model, the price of a zero-coupon bond is given by

\[P(t, T) = A(t, T) e^{-B(t, T)r(t)} \] \hspace{1cm} (13)

with

\[
\begin{align*}
A(t, T) &= \exp \left[(\theta - \frac{\sigma^2}{2\kappa^2})(B(t, T) - (T - t)) - \frac{\sigma^2}{4\kappa} B(t, T)^2 \right] \\
B(t, T) &= \frac{1 - e^{-\kappa(T-t)}}{\kappa}
\end{align*}
\] \hspace{1cm} (14)

Explicit pricing formula.
Proposition

In the Vasicek model, the continuously-compounded spot rate is written

$$R(t, T) = R_\infty + (r_t - R_\infty) \frac{1 - e^{-\kappa(T-t)}}{\kappa(T-t)} + \frac{\sigma^2}{4\kappa^3(T-t)}(1 - e^{-\kappa(T-t)})^2$$ \hspace{1cm} (15)$$

with

$$R_\infty = \theta - \frac{\sigma^2}{2\kappa^2}$$ \hspace{1cm} (16)$$
Table of contents

1. The Vasicek model

2. The CIR model

3. The Hull-White (extended Vasicek) model
Model definition

Original paper

Dynamics of the short rate

Short rate is given by the following SDE

\[dr_t = \kappa [\theta - r_t] dt + \sigma \sqrt{r_t} dW_t \]

(17)

with \(\kappa, \theta, \sigma \) positive constants satisfying \(\sigma^2 < 2\kappa\theta \).
The CIR model

Dynamics of the short rate

Proposition

In the CIR model, the short rate $r(t)$ follows a noncentral χ^2 distribution.
Pricing of zero-coupon bonds

Proposition
In the CIR model, the price of a zero-coupon bond is

\[P(t, T) = A(t, T)e^{-B(t,T)r(t)} \] \hspace{1cm} (18)

with

\[A(t, T) = \begin{bmatrix} 2\gamma e^{\frac{\kappa + \gamma}{2}(T-t)} \\ 2\gamma + (\kappa + \gamma)(e^{\gamma(T-t)} - 1) \end{bmatrix} \frac{2\kappa \theta}{\sigma^2} \]

\[B(t, T) = \frac{2(e^{\gamma(T-t)} - 1)}{2\gamma + (\kappa + \gamma)(e^{\gamma(T-t)} - 1)} \]

\[\gamma = \sqrt{\kappa^2 + 2\sigma^2} \] \hspace{1cm} (19)
Table of contents

1. The Vasicek model
2. The CIR model
3. The Hull-White (extended Vasicek) model
Model definition

Original paper

Dynamics of the short rate

Short rate is given by the following SDE

\[dr_t = [b(t) - ar_t]dt + \sigma dW_t \]

(20)

with \(a\) and \(\sigma\) positive constants.

Non-time-homogeneous extension of the Vasicek model.
The Hull-White (extended Vasicek) model

Model definition

Proposition
This model can exactly fit the term-structure observed on the market by setting

\[
b(t) = \frac{\partial f^M}{\partial T}(0, t) + af^M(0, t) + \frac{\sigma^2}{2a} \left(1 - e^{-2at} \right) \tag{21}\]

Dynamics of the short rate

The short rate SDE can then be integrated to obtain:

\[
r(t) = r(s)e^{-a(t-s)} + \alpha(t) - \alpha(s)e^{-a(t-s)} + \sigma \int_s^t e^{-a(t-u)} dW_u \tag{22}\]

with \(\alpha(t) = f^M(0, t) + \frac{\sigma^2}{2a^2} (1 - e^{-at})^2.\)
Price of zero-coupon bonds

Proposition

In the Hull-White model, the price of a zero-coupon bond is given by

\[P(t, T) = A(t, T)e^{-B(t,T)r(t)} \] (23)

with

\[
\begin{align*}
A(t, T) &= \frac{P^M(0, T)}{P^M(0, t)} \exp \left[B(t, T)f^M(0, t) - \frac{\sigma^2}{4a} (1 - e^{-2at})B(t, T)^2 \right] \\
B(t, T) &= \frac{1}{a} (1 - e^{-a(T-t)})
\end{align*}
\] (24)
Price of options on a zero-coupon bond

Proposition

In the Hull-White model, the price of a european call option, with strike K and maturity T, on a zero-coupon bond of maturity $S > T$, can be written

$$C^{HW}_{ZC} = P(t, S)N(q_1) - KP(t, T)N(q_2)$$

(25)

with

$$\begin{cases}
\sigma_r^T &= \sigma \sqrt{\frac{1-e^{-2a(T-t)}}{2a}} B(T, S) \\
q_1 &= \frac{1}{\sigma_r^T} \ln \frac{P(t, S)}{KP(t, T)} + \frac{\sigma_r^T}{2} \\
q_2 &= q_1 - \sigma_r^T
\end{cases}$$

(26)
Part III

From short rate models to HJM framework
Table of contents

4 Multifactor models

5 The HJM framework
Table of contents

4 Multifactor models

5 The HJM framework
Motivations

- **Empirical studies**: correlations of interests rates by maturity

<table>
<thead>
<tr>
<th></th>
<th>1M</th>
<th>3M</th>
<th>6M</th>
<th>1A</th>
<th>2A</th>
<th>3A</th>
<th>4A</th>
<th>5A</th>
<th>7A</th>
<th>10A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3M</td>
<td>0.999</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6M</td>
<td>0.908</td>
<td>0.914</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>0.546</td>
<td>0.539</td>
<td>0.672</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>0.235</td>
<td>0.224</td>
<td>0.31</td>
<td>0.88</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>0.246</td>
<td>0.239</td>
<td>0.384</td>
<td>0.808</td>
<td>0.929</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>0.209</td>
<td>0.202</td>
<td>0.337</td>
<td>0.742</td>
<td>0.881</td>
<td>0.981</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5A</td>
<td>0.163</td>
<td>0.154</td>
<td>0.255</td>
<td>0.7</td>
<td>0.859</td>
<td>0.936</td>
<td>0.981</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7A</td>
<td>0.107</td>
<td>0.097</td>
<td>0.182</td>
<td>0.617</td>
<td>0.792</td>
<td>0.867</td>
<td>0.927</td>
<td>0.97</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10A</td>
<td>0.073</td>
<td>0.063</td>
<td>0.134</td>
<td>0.549</td>
<td>0.735</td>
<td>0.811</td>
<td>0.871</td>
<td>0.917</td>
<td>0.966</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Empirical studies**: PCA on correlation matrix

 |
 No. of factors | 1 | 2 | 3 | 4 | 5 |
 1 | 67.7| 83.9| 93.7| 97.1| 98.5|
 JPY | 75.8| 91.2| 94.3| 96.6| 98.1|
 USD | 75.8| 85.1| 93.0| 97.0| 98.9|

- Correlation in one-factor affine term structure models

- Arbitrage in short/long rates models (Dybvig, Ingersoll, Ross, (1996))
A Gaussian two-factor model (I)

Model definition

The short rate $r(t)$ is written

$$r(t) = x(t) + y(t) + \phi(t), \quad r(0) = r_0,$$

(27)

where the two factors x and y are solutions of the following SDEs:

$$\begin{align*}
 dx(t) &= -ax(t)dt + \sigma dW_1(t), \quad x(0) = 0, \\
 dy(t) &= -by(t)dt + \eta dW_2(t), \quad y(0) = 0,
\end{align*}$$

(28)

with $d\langle W_1, W_2 \rangle_t = \rho$ and ϕ is a deterministic function such that $\phi(0) = r_0$.
A Gaussian two-factor model (II)

Price of a zero-coupon bond

In the Gaussian two-factor model, the price $P(t, T)$ at time t of the T-maturity zero-coupon bond can be written

$$P(t, T) = \exp\{-\int_0^T \phi(u)du - \frac{1-e^{-a(T-t)}}{a}x(t) - \frac{1-e^{-b(T-t)}}{b}y(t) + \frac{1}{2}V(t, T)\}$$ (29)

Fitting the observed term structure

The Gaussian two-factor model fits the observed term structure $P^M(0, T)$ if and only if ϕ is written

$$\phi(T) = f^M(0, T) + \frac{\sigma^2}{2a^2}(1-e^{aT})^2 + \frac{\eta^2}{2b^2}(1-e^{bT})^2 + \rho\frac{\sigma\eta}{ab}(1-e^{aT})(1-e^{bT})$$ (30)
Pricing of zero-coupon bond

In the Gaussian two-factor model, the price $P(t, T)$ at time t of the T-maturity zero-coupon bond can be written

$$P(t, T) = A(t, T) \exp\{ -B_a(t, T)x(t) - B_b(t, T)y(t) \}$$ \hspace{1cm} (31)

where

$$\begin{align*}
A(t, T) &= \frac{P^M(0, T)}{P^M(0, t)} \exp\{ \frac{1}{2}(V(t, T) - V(0, T) + V(0, t)) \}, \\
B_i(t, T) &= \frac{1 - e^{-i(T-t)}}{i}.
\end{align*}$$ \hspace{1cm} (32)

First step allowing the modeling of correlations.
Table of contents

4 Multifactor models

5 The HJM framework
Framework definition

Original paper

Forward dynamics
The instantaneous forward rates dynamics is given by the following SDE:

\[
\begin{align*}
 df(t, T) &= \alpha(t, T)dt + \sigma(t, T)dW_t, \\
 f(0, T) &= f^M(0, T).
\end{align*}
\]

(33)
In a HJM framework, the price of the T-maturity zero-coupon bond is solution of the following SDE:

$$dP(t, T) = P(t, T) \left[r_t - \alpha^*(t, T) + \frac{1}{2} \sigma^*(t, T)^2 \right] dt - \sigma^*(t, T)P(t, T)dW_t,$$

(34)

where

$$\begin{align*}
\alpha^*(t, T) &= \int_t^T \alpha(t, u)du, \\
\sigma^*(t, T) &= \int_t^T \sigma(t, u)du.
\end{align*}$$

(35)
The HJM framework

No arbitrage condition (II)

Dynamics of the zero-coupon bond prices

In a HJM framework, there is no arbitrage if there exists a process
\((\theta_t)_{0 \leq t \leq \bar{T}} \) satisfying

\[
\alpha(t, T) = \sigma(t, T)[\sigma^*(t, T) + \theta(t)]
\] \hspace{1cm} (36)

In this case, dynamics in the model can be rewritten under a risk-neutral measure \(Q \):

\[
df(t, T) = \sigma(t, T)\sigma^*(t, T)dt + \sigma(t, T)dW^Q_t
\]
\[
dP(t, T) = r_tP(t, T)dt - \sigma^*(t, T)P(t, T)dW^Q_t
\] \hspace{1cm} (37)
Dynamics of the short rate

In a no arbitrage HJM framework, the short rate can be written

\[r(t) = f(0, t) + \int_0^t \sigma(u, t) \int_u^t \sigma(u, s) ds \, du + \int_0^t \sigma(u, t) dW_u \]

Choice of volatilities to get a markovian model:

- Separation of variables: \(\sigma(t, T) = \xi(t)\phi(T) \)
- Ritchken and Sankarasubramanian (1995): \(\sigma(t, T) = \eta(t)e^{-\int_t^T \kappa(u) du} \)
Ritchken and Sankarasubramanian volatility (1995)

In a 1D HJM framework with \(\sigma(t, T) \) \(T \)-differentiable, every derivative product is completely determined by a two-dimensional Markov process if and only if

\[
\sigma(t, T) = \eta(t) e^{-\int_t^T \kappa(u) du} \]

where \(\eta \) is an adapted process and \(\kappa \) is a deterministic and integrable process.
The HJM framework

Link with affine models

Proposition

If the SDE $dr_t = b(t, r_t)dt + \gamma(t, r_t)dW_t$ defines a short rate model with an affine term structure $P(t, T) = A(t, T)e^{-B(t, T)r(t)}$, then this model belongs to the HJM framework with $\sigma(t, T) = \frac{\partial}{\partial T} B(t, T) \gamma(t, r_t)$.

One can check that the Vasicek, CIR and Hull-White models are one-dimensional no-arbitrage HJM models.
Choices of volatility

Ho-Lee

\[\sigma(t, T) = \sigma \quad \text{(constant)} \]

(39)

Vasicek/Hull-White

\[\sigma(t, T) = \gamma(t)e^{-\lambda(T-t)} \]

(40)
Pricing of caplet

Proposition

In a no-arbitrage HJM framework, the price of a caplet of maturity T, strike K, paid in $T + \theta$ is written:

$$C(t, T, K, \theta) = P(t, T + \theta) \left[(1 + \theta L(t, T, T + \theta) N(d_1) - (1 + \theta K) N(d_0) \right]$$

(41)

where

$$\begin{align*}
 d_0 &= \frac{1}{\Sigma(t, T)} \ln \frac{1 + \theta L(t, T, T + \theta)}{1 + \theta K} - \frac{1}{2} \Sigma^2(t, T) \\
 d_1 &= d_0 + \Sigma(t, T) \\
 \Sigma(t, T) &= \int_t^T (\sigma^*(u, T + \theta) - \sigma^*(u, T))^2 du
\end{align*}$$

(42)
Part IV

Libor market models
Table of contents

6 Change of numeraire

7 The Black Formula

8 The BGM market model
Table of contents

6 Change of numeraire

7 The Black Formula

8 The BGM market model
General change of measure

Theorem

Assume there exists a numeraire \((M_t)_{t \geq 0}\) and an equivalent measure \(Q^M\) such that the price of any traded asset \(X\) “discounted” by the process \(M\) is a \(Q^M\)-martingale, i.e.

\[
\frac{X_t}{M_t} = E^{Q^M} \left[\frac{X_T}{M_T} \bigg| \mathcal{F}_t \right].
\]

Let \((N_t)_{t \geq 0}\) be a numeraire. Then there exists an equivalent probability measure \(Q^N\) such that the price of any traded asset \(X\) “discounted” by \(N\) is a \(Q^N\)-martingale, i.e.

\[
\frac{X_t}{N_t} = E^{Q^N} \left[\frac{X_T}{N_T} \bigg| \mathcal{F}_t \right].
\]

\(Q^N\) is defined by the Radon-Nikodym derivative

\[
\frac{dQ^N}{dQ^M} \bigg|_{\mathcal{F}_T} = \frac{N_T}{N_0} \frac{M_0}{M_T}.
\]

(43)
Proposition

Let Q be the risk-neutral measure associated with a riskless numeraire $\beta(t) = e^{\int_0^t r_u du}$. Let X be a traded asset with Q-dynamics

$$dX_t = r_t X_t dt + \sigma^X(t, X_t) dW_t^Q$$

(44)

Let N be another traded asset:

$$dN_t = r_t N_t dt + \sigma^N(t, N_t) dW_t^Q$$

(45)

Then $\frac{X_t}{N_t}$ is a Q^N-martingale with dynamics:

$$d \left(\frac{X_t}{N_t} \right) = \frac{X_t}{N_t} \left(\sigma^X(t, X_t) - \sigma^N(t, N_t) \right) \sigma^N(t, N_t) dW_t^{Q^N}$$

(46)

where $dW_t^{Q^N} = dW_t^Q - \sigma^N(t, N_t) dt$ is a Q^N-brownian motion.
Table of contents

6 Change of numeraire

7 The Black Formula

8 The BGM market model
The Black formula

Proposition

The Black formula for a caplet (maturity T, strike K) on the θ-tenor Libor $L(., . + \theta$ and paying at date $T + \theta$ is written:

$$C(t, T, K, \theta) = P(t, T + \theta) [L(t, T, T + \theta)N(d_1) - KN(d_2)]$$ \hspace{1cm} (47)

where

$$
\begin{align*}
 d_1 &= \frac{1}{\sigma \sqrt{T - t}} \ln \frac{L(t, T, T + \theta)}{K} + \frac{1}{2} \sigma \sqrt{T - t} \\
 d_2 &= d_1 - \sigma \sqrt{T - t}
\end{align*}
$$ \hspace{1cm} (48)

When is this formula justified?
Table of contents

6 Change of numeraire

7 The Black Formula

8 The BGM market model
Model definition (I)

Original paper

Assumptions ans notations

- Calendar $0 < T_0 < T_1 < \ldots < T_M$.
- M forward Libor rates $(L(t, T_0, T_1), \ldots, L(t, T_{M-1}, T_M)$ with tenor $\theta_i = T_i - T_{i-1}$.
- Notation : $\forall i = 1, \ldots, M, L_i(t) = L(t, T_{i-1}, T_i)$
Dynamics of the forward Libor rates

Each forward Libor is assumed to be a martingale with respect to the associated forward measure:

\[
\frac{dL_i(t)}{L_i(t)} = \gamma_i(t)dW_{i,T_i}^{i,Q}(t)
\] (49)

where \(\gamma_i(t)\) is a \textit{deterministic} function.
No arbitrage condition

Proposition

In the BGM model, the no arbitrage condition gives the following relationship between the volatilities γ_i of the forward Libor and the volatilities Γ_i of the zero-coupon bonds $P(t, T_i)$:

$$\gamma_i(t) = \frac{1 + \theta_i L_i(t)}{\theta_i L_i(t)} \left[\Gamma_i(t) - \Gamma_{i-1}(t) \right].$$

(50)
Pricing caplets

Proposition

In the BGM model, the price at time 0 of a post-paid caplet (strike K, maturity T_{i-1} on a Libor rate $L(T_{i-1}, T_i)$) is given by:

$$C(0, T_{i-1}, K, \theta_i) = P(0, T_i) [L_i(0)N(d_1) - K N(d_2)]$$

(51)

where

$$d_1 = \frac{1}{\nu} \ln \frac{L_i(0)}{K} + \frac{1}{2} \nu$$

$$d_2 = d_1 - \nu$$

$$\nu = \int_0^{T_{i-1}} \gamma_i^2(t) dt$$

(52)

The volatility implied by the Black formula is then

$$\sigma_{\text{imp}}^{\text{Black}}(L_i) = \sqrt{\frac{1}{T_{i-1}} \int_0^{T_{i-1}} \gamma_i^2(t) dt}$$

(53)
Specifying Libor volatilities (I)

Simple choice: constant volatilities

\[\forall i = 1, \ldots, M, \quad \gamma_i(t) = \gamma_i \text{ constant}. \quad (54) \]

<table>
<thead>
<tr>
<th>(L_1(t))</th>
<th>([0, T_0])</th>
<th>(T_0, T_1)</th>
<th>(T_1, T_2)</th>
<th>(\ldots)</th>
<th>(T_{M-2}, T_{M-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma_1)</td>
<td>dead</td>
<td>dead</td>
<td>(\ldots)</td>
<td>dead</td>
<td></td>
</tr>
<tr>
<td>(L_2(t))</td>
<td>(\gamma_2)</td>
<td>(\gamma_2)</td>
<td>dead</td>
<td>(\ldots)</td>
<td>dead</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(L_M(t))</td>
<td>(\gamma_M)</td>
<td>(\gamma_M)</td>
<td>(\gamma_M)</td>
<td>(\ldots)</td>
<td>(\gamma_M)</td>
</tr>
</tbody>
</table>
Another simple choice: piecewise-constant volatilities

\[
\forall i = 1, \ldots, M, \quad \gamma_i(t) = \gamma_{i, \beta(t)} \text{ constant.} \tag{55}
\]

<table>
<thead>
<tr>
<th>Function</th>
<th>Interval</th>
<th>Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1(t))</td>
<td>([0, T_0])</td>
<td>(\gamma_{1,1})</td>
</tr>
<tr>
<td>(L_2(t))</td>
<td>([T_0, T_1])</td>
<td>(\gamma_{2,1}), (\gamma_{2,2})</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>([T_1, T_2])</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(L_M(t))</td>
<td>([T_{M-2}, T_{M-1}])</td>
<td>(\gamma_{M,1}), (\gamma_{M,2}), (\gamma_{M,3})</td>
</tr>
</tbody>
</table>
Specifying Libor volatilities (III)

Simpler: piecewise-constant volatility that depends only on the time to maturity

\[\forall i = 1, \ldots, M, \quad \gamma_i(t) = \gamma_{i, \beta(t)} = \eta_i - (\beta(t) - 1) \text{ constant.} \quad (56) \]

<table>
<thead>
<tr>
<th></th>
<th>[0, (T_0)]</th>
<th>([T_0, T_1])</th>
<th>([T_1, T_2])</th>
<th>(\ldots)</th>
<th>([T_{M-2}, T_{M-1}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_1(t))</td>
<td>(\eta_1)</td>
<td>dead</td>
<td>dead</td>
<td>(\ldots)</td>
<td>dead</td>
</tr>
<tr>
<td>(L_2(t))</td>
<td>(\eta_2)</td>
<td>(\eta_1)</td>
<td>dead</td>
<td>(\ldots)</td>
<td>dead</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(L_M(t))</td>
<td>(\eta_M)</td>
<td>(\eta_{M-1})</td>
<td>(\eta_{M-2})</td>
<td>(\ldots)</td>
<td>(\eta_1)</td>
</tr>
</tbody>
</table>
Specifying Libor volatilities (IV)

Parametric choices

One may also define Libor volatilities with $\forall i = 1, \ldots, M,$:

$$\gamma_i(t) = [a(T_{i-1} - t) + d] e^{-b(T_{i-1} - t)} + c \quad (57)$$

or

$$\gamma_i(t) = \eta_i [a(T_{i-1} - t) + d] e^{-b(T_{i-1} - t)} + c \quad (58)$$
Dynamics of the forward Libor rates under a unique forward measure

Proposition

Let $i \in \{1, \ldots, M\}$. The dynamics of the forward Libor rates $L_i(t)$ under the forward measure Q^{T_k}, $k = 1, \ldots, M$ is given by the following SDE:

If $k < i$,

$$
\frac{dL_i(t)}{L_i(t)} = \gamma_i(t) dW_{i,Q^{T_k}}^i - \sum_{j=k}^{i} \rho_{ij} \gamma_i(t) \gamma_j(t) \frac{\theta_j L_j(t)}{1 + \theta_j L_j(t)} dt,
$$

If $k = i$,

$$
\frac{dL_i(t)}{L_i(t)} = \gamma_i(t) dW_{i,Q^{T_i}}^i
$$

If $k > i$,

$$
\frac{dL_i(t)}{L_i(t)} = \gamma_i(t) dW_{i,Q^{T_k}}^i + \sum_{j=i+1}^{k} \rho_{ij} \gamma_i(t) \gamma_j(t) \frac{\theta_j L_j(t)}{1 + \theta_j L_j(t)} dt.
$$
Introducing the spot Libor measure

Definition

The spot Libor numeraire is defined as:

\[
B(t) = \frac{P(t, T_{\beta(t)-1})}{\beta(t)-1} \prod_{j=0}^{\beta(t)-1} P(T_{j-1}, T_j)
\]
(59)

Proposition

Under the spot Libor measure \(Q^B \) associated with the numeraire \(B(t) \), the dynamics of the forward Libor \(L_i(t) \) is written:

\[
\frac{dL_i(t)}{L_i(t)} = \gamma_i(t)dW^{Q^B} + \sum_{j=\beta(t)}^{i} \rho_{ij} \gamma_i(t) \gamma_j(t) \frac{\theta_j L_j(t)}{1 + \theta_j L_j(t)} dt.
\]
(60)
Swap market model

Original paper

Model definition
A swap market models assumes that the swap rate $S_{\alpha,\beta}$ is solution of the SDE:

$$\frac{dS_{\alpha,\beta}(t)}{S_{\alpha,\beta}(t)} = \gamma_{\alpha,\beta}(t)dW^{Q_{\alpha,\beta}}(t), \quad (61)$$

where $Q_{\alpha,\beta}$ is the measure linked with numeraire $\sum_{i=\alpha+1}^{\beta} \tau_i P(t, T_i)$.

- Compatibility with the Black formula for swaption
- Theoretical inconsistency with the BGM market model
Other LIBOR approaches
